On dynamic flow-sensitive floating-label systems

Pablo Buiras¹, Deian Stefan², and Alejandro Russo¹

CHALMERS¹

STANFORD² UNIVERSITY²

COINS PhD student seminar Tromsø, October 2014

Confidentiality

Security lattice

H

T,

Arrows indicate **allowed** flows $L \preccurlyeq L = H \preccurlyeq H$ $L \preccurlyeq H$

Logging and IFC

Flow-insensitive:

Fixed mapping from memory locations to security labels

Flow-sensitive:

Labels can change while the program runs

Our contributions

Flow-insensitive LIO

Floating label

Label creep

LIO COMPUTATION

Label creep (2)

LIO COMPUTATION

Flow-sensitive LIO

Naïve flow-sensitivity

• Change label when writing to the reference

Label on the label

• We must protect the label with another label!

FLOW-SENSITIVE REFERENCE

Invariant: *LOL* ≤ *Label*

• LOL = current label at creation time

Upgrade

- Upgrades must be done <u>before</u> raising the current label
- Explicit **upgrade** operation (as in e.g. [Hedin, Sabelfeld SAC 14])

labelOf

Embedding

• We can do this in the FI fragment of LIO!

Embedding of read

What we got

What we learnt

Flow sensitivity is tricky but

- First-class FI labelled references
- Fresh environments

flow sensitivity

Related Work

Comparison with Related Work

- No-sensitive-upgrades [Zdancewic 02] can be encoded in a flow-insensitive enforcement
- Hard to compare with permissive-upgrades [Austin, Flanagan PLAS 2010]
- Label on the label
 - Isomorphic to existence security labels [Hedin et al CSF 2012] [Rafnsson, Sabelfeld CSF 2013]