
Distributed and Secure Social
Network Mobile Application
with Id-based crypto and
Cloud storage service

Tien Dat Le

Outline

•  Introduction

•  Contribution

•  Methodology

•  Implementation

•  Evaluation

•  Conclusion

•  Future work

•  Q&A

OSN background

•  Online social network (OSN): a system where

–  Users are main entities with profiles

–  Users can create links to others users and resources

–  Users can navigate the social network by browsing
the profiles and resources link

– 

Loss of control, Lack of privacy
•  OSN providers monetize by

selling your privacy to the
marketer [1]

•  The trending worsen:
constantly change in privacy
policies to diminish the right
of users to control their data
[2]

•  Privacy violation by
manipulating the data flow
to users [3]

[1] “Facebook, MySpace confront privacy loophole,” The Wall Street Journal, May 2010.
[2] https://www.eff.org/deeplinks/2010/04/facebook-timeline.
[3] http://www.latimes.com/nation/nationnow/la-na-nn-facebook-research-20140629-story.html

How to protect users?

•  DECENTRALIZING the OSN

–  SocialLife + PeerSoN project [1]: pure peer-to-peer
system with public-key crypto and access control.

–  Disapora [2]: distributed server architecture. Handling
personal data to your trusted pot.

–  Vis-a`-Vis [3]: pure cloud solution. Each user should
have a cloud to host their OSN.

[1] “Anwitaman Datta, Sonja Buchegger, Le Hung Vu, Thorsten Strufe, and Krzysztof Rzadca, “Decentralized Online Social
Networks”.
[2] Diaspora blog, https://blog.diasporafoundation.org/1-diaspora-celebrates-one-year-as-a-community-project.
[3] Amre Shakimov∗, Harold Lim∗, Ram´on C´aceres†, Landon P. Cox∗, Kevin Li†, Dongtao Liu∗, and Alexander
Varshavsky†, “Vis-`a-Vis: Privacy-Preserving Online Social Networking via Virtual Individual Servers”.

Challenges still remain

•  SocialLife + PeerSoN project:

–  requires users to manage trust and certificates by
their own

•  Disapora:

–  What if your trusted pod server is evil?

–  A few dominated pods could become centralization.

•  Vis-a`-Vis:

–  COST for their own cloud.

Mobile trending – more challenges
•  Twitter have revealed a new

complete study for mobile
users as they are the main
users [1]

•  Due toTech crunch, facebook
reveals 78% of US users are
mobile [2]

[1] https://blog.twitter.com/2013/new-compete-study-primary-mobile-users-on-twitter
[2] http://techcrunch.com/2013/08/13/facebook-mobile-user-count/

Why mobile trending challenge

•  Energy consumption and computing resources constrains

•  Less resources to contribute to the p2p network

•  No security tools to manage your certificate

•  More chances to lose top private secret keys with the
mobile

That means:

•  Not likely to prefer computing redundancy security
scheme for strangers

•  Serving hot-spot contents killing your battery

•  Small trusted p2p networks is not enough resources

How to solve problems

•  The resources constrains problems:

–  Separating storage service, security provider service
and communication service

–  Outsourcing heavy-weight resources demand activities
to cloud computing

–  Only keep core activities on the mobile p2p network

•  Security problems:

–  Top secrets should be kept separately on different
trusted provider

–  Only session keys on the mobile

Our approach

•  Lightweight communication system suitable for mobile.

•  Put access control burden to semi-trusted CLOUD
STORAGE SERVICE

•  Deploying IDENTITY-BASED CRYPTO for privacy

•  By separating storage service and security service, you
could:

–  Encrypted data to sensor it from cloud provider

–  Exploit access control list of data storage service to
distribute session key and mitigate key-escrow
problem of identity-based crypto.

Why cloud storage service?

•  FREE (For personal usage
is enough)

•  Familiar with people

•  Trending technology

•  High availability

•  Multi-platform API support

•  Access control support

Why identity-based crypto?

•  Simplizing CA infrastructure to private-key generator
server

•  Remove the burden of managing certificate

•  Support online identity naturally

•  More flexible than public key crypto in BROADCAST
encryption (Group key revoking easier)

Concept components

–  Deploying structure peer-to-peer PASTRY network as
backbone for peer communication:

•  SCRIBE publish/subscribe system for multicasting
notification and event.

•  PAST DHT storage system for profile searching
and indexing.

–  Define cloud storage interface for the architecture for
data storage and data control access (proof-of-
concept version work for GoogleDrive)

–  Deploy Identity-based cryptography for
authentication and key distribution scheme with JPBC
library for java

Application model

Private Key Generator

•  Based on rfc5408 for Identity-Based encryption
architecture

–  Toolkit to generate ASN1 encode certificate for
Master Secret Key – Public Key pair.

–  Servers to deploy the private key generator
extraction algorithm

–  Our first prototype supports:

•  Cécile Delerablée Identity-based broadcast
encryption [1]

•  Kenneth and Jacob Efficient Identity-based
Signatures Secure in the Standard Model [2]

[1] C. Delerable, P. Paillier, and D. Pointcheval, “Fully collusion secure dynamic broadcast encryption with constant-size
ciphertexts or decryption keys”.
[2] hKenneth G. Paterson, Jacob C. N. Schuldt, “Efficient Identity-based signatures secure in the standard model”.

Who hosts the PKGs ?

•  Diaspora proved that there is many trusted third party
likely to host your PKG like for the Diaspora pods

•  Since users could not trust them totally, Encapsulated
Session Keys is put on the cloud storage with access
control

How to add new cloud provider

•  We define an api interface that cloud storage should
support to work with our apps

•  Adding new clouds = mapping cloud’s API to our API

First prototype

•  Our DOSN prototype support

–  Find your friend profile with id

–  Posting status

–  Sending message (Online,
offline)

–  Follow your friends

–  Follow people

–  Follow #hashtag

–  Change session key at will

–  Encrypted your contents with
session key

Java web server as PKG

•  Id-based master key-pair generator make it easy to
setup and manage the PKG

•  All you need is a java web-server

How your cloud drive look like

Evaluation

Security

•  Depends on which information attackers possess

–  Only encrypted contents: 128-bits security level

–  Encrypted contents and encapsulated session keys:
80-bits security level

Attack From Security
level

Possible
combinations

Time required to
break [1]

A storage provider 128-bits !.!!×!!"!" !.!"!×!!"!"!years
Colluded storage

providers
80-bits !.!"#!×!!"!" !""#!years

Hacker have access
to the encrypted

contents

128-bits !.!!×!!"!" !.!"!×!!"!"!years

Hacker have access
to encapsulated
session keys and

encrypted contents

80-bits !.!"#!×!!"!" !""#!years

!
[1] “How secure is AES against brute force attacks? | EE Times,” EETimes. [Online] Available: http://www.eetimes.com/
document.asp?doc_id=1279619

Efficiency

•  Computation:

–  Symmetric encryption/decryption: averagely 10ms
per 3KB item

–  Session key distribution process time: 1053 ms per
key on average (due to identity-based cryptography
cost)

•  Energy:

–  8% of battery for processing 1,000 encrypted items
of size 3KB received.

–  8% of battery for processing 1,000 plain items of
size 3KB received.

–  16% of battery for distributing 1,000 session keys

Estimated overhead cost of
security scheme
•  Using a model based on statistics[1] where an user have:

averagely 300 friends, 200 of them publishing content
daily (3 items averagely each). Given that active users
force to change session keys:

-  Daily: 210.6 seconds and 3% battery for distributing
session keys per day.

–  3-days basis: 70.2 seconds and 1% battery for
distributing session keys per day.

–  Weekly: 30.1 seconds and 0.5% battery for
distributing session keys per day.

•  Symmetric encryption cost could be ignore for small
sizes item

[1] MarketingCharts. [Online]. Available: http://www.marketingcharts.com/wp/online/18-24-year-olds-on-facebook-boast-
an-average-of-510-friends-28353/.

Conclusion

•  What we did

-  Studied literature in DOSN.

–  Proposed and implemented a new DOSN architecture
that

§  Enhance privacy

§  Remove users’ burden of certificate management

§  Keep free operation cost

§  Can work on mobile

Conclusion

•  What we archived

–  First proof-of-concept prototype:

§  Enhance privacy by separating session keys and
encrypted contents in different clouds

§  Provide global trust and remove certificate
management effort with id-based crypto

§  Have free operation cost

§  Show adequate computation and energy
efficiency to work on mobile devices

Future work

•  Conduct further studies to optimize the model

–  Applying different pair-based cryptography librarys
and compare efficiency

–  Adding NAT-traversal + Bootstrapping node list for
the DHT

–  Extending the implementation to support more cloud
storage providers

Q&A

References

[DN07] Danah Boyd and Nicole B. Ellison. Social network sites:
Definition, history and scholarship. Journal of Computer-Mediated
Communication, 13(1), 2007
[SV10] E. Steel and J. E. Vascellaro, “Facebook, MySpace confront
privacy loophole,” The Wall Street Journal, May 2010
[KO10] K. Opsahl, “Facebook’s eroding privacy policy: A timeline,”
https://www.eff.org/deeplinks/2010/04/facebook-timeline.
Accessed 29/5/2014
[AS10] Anwitaman Datta, Sonja Buchegger, Le Hung Vu, Thorsten
Strufe, and Krzysztof Rzadca, “Decentralized Online Social
Networks”. In Handbook of Social Network Technologies and
Applications, 2010, pp 349-378
[DB14] Diaspora blog,
https://blog.diasporafoundation.org/1-diaspora-celebrates-one-
year-as-a-community-project. Accessed 29/5/2014

References

[AHRL] Amre Shakimov∗, Harold Lim∗, Ram´on C´aceres†,
Landon P. Cox∗, Kevin Li†, Dongtao Liu∗, and Alexander
Varshavsky†, “Vis-`a-Vis: Privacy-Preserving Online Social
Networking via Virtual Individual Servers”
[PMUT13] New compete study: Primary mobile users on Twitter,
https://blog.twitter.com/2013/new-compete-study-primary-
mobile-users-on-twitter, Accessed 1/6/2014
[FMUC13] Facebook mobile user count,
http://techcrunch.com/2013/08/13/facebook-mobile-user-count/,
Acessed 30/5/2014
[CD07] C. Delerable, P. Paillier, and D. Pointcheval, “Fully collusion
secure dynamic broadcast encryption with constant-size
ciphertexts or decryption keys,” in Pairing-Based Cryptography
Pairing 2007, ser. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2007, vol. 4575, pp. 39–59.

References

[PS06] Kenneth G. Paterson, Jacob C. N. Schuldt, “Efficient
Identity-based signatures secure in the standard model”,
Information Security and Privacy Lecture Notes in Computer
Science Volume 4058, 2006, pp 207-222
[FTUE14] “Facebook tinkered with users’ emotions in
experiment.” [Online]. Available: http://www.latimes.com/nation/
nationnow/la-na-nn-facebook-research-20140629-story.html.
[Accessed: 11-Jul-2014
[MC14] “18-24-Year-Olds on Facebook Boast an Average of 510
Friends,” MarketingCharts. [Online]. Available: http://
www.marketingcharts.com/wp/online/18-24-year-olds-on-
facebook-boast-an-average-of-510-friends-28353/. [Accessed: 22-
Jun-2014].
[EE14] “How secure is AES against brute force attacks? | EE
Times,” EETimes. [Online]. Available: http://www.eetimes.com/
document.asp?doc_id=1279619. [Accessed: 17-Jul-2014].

Appendix

•  Source code:

https://github.com/kekkaishivn/DSNA-Application

•  Private key generator server:

https://130.237.20.200:8080/DSNA_privatekeygenerator/
SystemPublic.txt

https://130.237.20.200:8080/DSNA_privatekeygenerator/
KeyExtract.jsp?clientid=letiendat3012@gmail.com

Friend session key distributed
scheme
•  Alice encapsulated new session key using her friends’

identities with identity-based broadcast encryption,
signed it and put to cloud.

•  Alice publish location of the file via publish/subscribe
topic

•  Bob get the key header from the cloud, verified using
Alice’s identity, decapsulated and change the session
key.

Friend authenticated scheme

•  Alice get Bob’s profile from DHT using Bob’s identity
(gmail address).

•  Alice get Bob’s To-Send-Friend-Request topic and send
friend request via the topic.

•  Bob get Alice’s friend request with Alice identity. He
create an file with a nonce and his profile encrypted key
in cloud; encrypt the file by Alice identity and send file
location to Alice.

•  Alice get the file from Bob, create an confirmation with a
nonce+1 and her profile encrypted key in cloud; encrypt
the file by Bob identity and send file location to Bob.

•  Alice and Bob decrypt their profile to get their To-
Subscribe-Topic. They subscribe each other topics and
become friend.

Unfriend scheme

•  Alice remove Bob’s identity from access control list.

•  Alice change session key using session key scheme,
which not allow Bob to know her new session key

•  Alice using new session key to broadcast the change of
her topic.

•  Bob know neither Alice’s session key nor Alice’s topic
after the unfriend scheme

master_thesis_presentation-TienDatLe

Cloud interface
public interface CloudStorageService {
 public List<String> initializeDSNAFolders() throws
UserRecoverableAuthIOException, IOException;
 public String uploadContentToFriendOnlyFolder(String title, String type, String
description, InputStream content) throws UserRecoverableAuthIOException, IOException;
 public String uploadContentToPublicFolder(String title, String type, String
description, InputStream content) throws UserRecoverableAuthIOException, IOException;
 public List<String> addPermission(String fileId, List<String> userIds, String
type, String role) throws UserRecoverableAuthIOException, IOException;
 public void removePermission(String fileId, String permissionId) throws
UserRecoverableAuthIOException, IOException;
 public void removePermission(String fileId, String userId, String permission)
throws UserRecoverableAuthIOException, IOException;
 public String createFolder(String title, String description, String parentId)
 throws UserRecoverableAuthIOException, IOException;
 public String createFile(String title, String type, String description, String
parentId, InputStream content) throws UserRecoverableAuthIOException, IOException;
 public void getFile(String fileId, Continuation<InputStream, Exception> action);
}

!

