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When designing computer monitoring systems, one goal has always been to have a complete view of the
monitored target and at the same time stealthily protect the monitor itself. One way to achieve this is to
use hypervisor-based, or more generally out of virtual machine (VM)-based, monitoring. There are, however,
challenges that limit the use of this mechanism; the most significant of these is the semantic gap problem.
Over the past decade, a considerable amount of research has been carried out to bridge the semantic gap
and develop all kinds of out-of-VM monitoring techniques and applications. By tracing the evolution of out-
of-VM security solutions, this article examines and classifies different approaches that have been proposed
to overcome the semantic gap—the fundamental challenge in hypervisor-based monitoring—and how they
have been used to develop various security applications. In particular, we review how the past approaches
address different constraints, such as practicality, flexibility, coverage, and automation, while bridging the
semantic gap; how they have developed different monitoring systems; and how the monitoring systems have
been applied and deployed. In addition to systematizing all of the proposed techniques, we also discuss the
remaining research problems and shed light on the future directions of hypervisor-based monitoring.
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1. INTRODUCTION

Computer system monitoring is a fundamental mechanism for maintaining systems
security. Intrusion detection, access control (e.g., DAC, MAC, and RBAC), sandboxing,
inlined reference monitors, firewalls, and antiviruses all involve security monitoring.
An ideal monitoring system should have both a complete view of the monitored target
and the ability to (stealthily) protect the monitoring system itself. Although there are
many ways to do so, it is not a simple task. Over the past few decades, a large amount
of research has been carried out to search for better and more secure ways to develop
such monitors.

To date, one promising strategy to achieve both a grand view and strong protection
for a monitor against the system it observes is to take advantage of the fact that
computer systems are designed in a hierarchical structure with layers [Dijkstra 1968].
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Traditionally, from top to bottom, there is the application layer, operating system (OS)
layer, and hardware layer. In general, each layer implements the abstractions and
interface for the layer above it, and it uses the predefined interface of the underlying
layer to perform its own functions. Each layer is well isolated from the layer above
it, and the lower the layer, the more control of the system it has—but with fewer
abstractions.

As a layer that runs in between the hardware and OS layers, the hypervisor was
first proposed in the 1960s [Popek and Goldberg 1974]. A hypervisor—also called a
virtual machine monitor (VMM)—enables a computing environment to run multiple
independent OSes at the same time in a single physical computer, which leads to more
effective use of the available computing power, storage space, and network bandwidth.
The fundamental reason for introducing a hypervisor layer into our computing stack
is that the capacity in a single server is so large that it is almost impossible for most
workloads to efficiently use it; consequently, virtualization becomes the best way to
improve resource utilization while also simplifying and automating computing unit
management. Although this computing model was originally designed to logically di-
vide the resources for time sharing of different applications in mainframes, it now
underpins today’s cloud computing and data centers.

In addition to pushing our computing paradigm from multitasking to multi-OS, hy-
pervisors have also pushed system monitoring from traditional in–virtual machine
(VM) monitoring to out-of-VM, hypervisor-based monitoring. This is because guest
OSes run on the virtual resources [Barham et al. 2003] that a VMM provides, which
gives new opportunities for flexibility and control because VMM essentially is a soft-
ware layer, and software is easier to modify, migrate, and monitor. Through extracting
and reconstructing the guest OS states at the VMM layer, out-of-VM monitors become
possible, empowering the monitoring system to control, isolate, interpose, inspect, se-
cure, and manage a VM from the outside [Chen and Noble 2001]. The seminal paper
of Garfinkel and Rosenblum [2003] on this topic, introducing the first hypervisor-
based monitoring system, “call[ed] this approach of inspecting a virtual machine from
the outside for the purpose of analyzing the software running inside it virtual ma-
chine introspection (VMI).” We will use the more general term out-of-VM to refer to
hypervisor-based monitoring, including VMI, throughout this article.

However, all out-of-VM solutions have to solve the semantic gap problem due to being
located one layer below the guest OS. Specifically, the semantic gap exists because
at the hypervisor layer, we have access only to the raw data of the hardware level
state of a VM—namely its CPU registers and physical memory, although we can also
access the instruction-level execution state for certain types of hypervisors (e.g., binary
translation–based VMs). However, what we want is the semantic information about
the guest OS state, such as the variables being accessed, variable types, and guest OS
kernel events. Therefore, we must bridge the semantic gap to obtain meaningful guest
OS state information. In the past decade, there have been many proposed approaches
for solving this problem, operating under different constraints and varying from being
purely manual to fully automated.

Out-of-VM monitors offer many advantages over traditional in-VM monitors because
they run at a higher privilege level and are isolated from attacks within the guest
OSes they monitor, and also because they are one layer below the guest OS and can
interpose all guest OS events. Consequently, out-of-VM monitors have been widely used
in many security applications, ranging from read-only introspection (e.g., Garfinkel and
Rosenblum [2003]) to writable reconfiguration and repair (e.g., Fu and Lin [2013b] and
Lin [2013]), passive intrusion detection (e.g., Joshi et al. [2005]) to active prevention
(e.g., Payne et al. [2008]), defense from malicious applications (e.g., Dinaburg et al.
[2008] and Srinivasan et al. [2011]) to defense from malicious OSes (e.g., [Chen et al.
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2008]), malware analysis (e.g., Lanzi et al. [2009] and Yin et al. [2007]) to memory
forensics (e.g, Dolan-Gavitt et al. [2011b] and Hay and Nance [2008]), and so forth.

Given such a significant amount of research in out-of-VM monitoring, there is a
pressing need to systematize the knowledge in this domain. As such, in this article,
we would like to follow the technical footprints and trace the evolution of out-of-VM
monitoring, revisit what has been done, discuss where we are, and shed light on where
to go. We begin with why we need out-of-VM monitoring and discuss the technical
background in Section 2. We then describe the semantic gap challenge faced in all
out-of-VM monitoring in Section 3. Next, we summarize how this challenge has been
solved under different constraints in Section 4 and classify all applications of out-of-
VM monitoring in Section 5, as well as how they have been deployed in Section 6. We
discuss the remaining research problems and future trends for out-of-VM monitoring
in Section 7, followed by a related work review in Section 8. Finally, we conclude in
Section 9.

2. BACKGROUND

In this section, we discuss the motivations of why we need out-of-VM monitoring.
We first review in-VM monitoring and discuss its pros and cons in Section 2.1. We
then introduce out-of-VM monitoring and discuss its advantages and disadvantages in
Section 2.2. Finally, we discuss the scope of this work in Section 2.3.

2.1. In-VM–Based Monitoring

In general, a security monitoring system can be defined as

M(S, P) → {True, False}, (1)

where M denotes the security enforcing mechanism, S denotes the current system
state, and P denotes the predefined policy. If the current state S satisfies the security
policy P, then it is in a secure state (True), and if M is an online mechanism, it can
allow continued execution. Otherwise, it is insecure (False); an attack1 is detected, and
M can halt the execution (for prevention) or report that there is an attack instance.
For example, in an antivirus system, S can denote the current memory and disk state,
and P the signatures of viruses; if M identifies that there is any running process or
suspicious file having one of the signatures defined in P, the antivirus will raise an
alarm. In a system call–based intrusion detection system, S can denote the current
system call and P can denote the correct state machines for S; if M identifies that
S deviates from P, then it can raise an intrusion alert. Besides these, a wide variety
of other security tools (e.g., security reference monitors) all fall under the security
monitoring category.

A crucial step in any monitoring system is how to collect the state information S
from predefined sensors, such as those embedded in the running OS or processes,
then monitor them with a well-defined security policy P. Prior to the advent of out-of-
VM monitoring, most monitoring systems were in-VM based, running normally as OS
applications or as loadable kernel modules in the OSes they monitor.

Advantages. Since in-VM based monitoring resides within the OS, it makes state
collection easy and fast. Specifically, in-VM implementations have the following
advantages:

—Rich abstractions: There are plenty of abstractions for in-VM monitors from which
to extract the OS and process state. They can use critical kernel variables, exported

1Note that in this article, we use the general term attack to represent all kinds of cyber breaches that
violate the security policy, such as malware (e.g., viruses, bots, rootkits, backdoors) that intrude and harm
the system, as well as memory exploits that compromise the system.
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registry or proc files—or even log files (on disk)—and system calls or library calls
provided by OS or third-party vendors. At an even higher level of abstraction, they
can also use the available in-VM security tools to extract the state. The monitoring
mechanism M can trivially intercept system calls or library calls and inspect their
arguments, return values, or sequences (e.g., Forrest et al. [1996]). They can also eas-
ily extract the known signatures (e.g., code hash) of running processes from memory
or disk, and verify their integrity (e.g., Tripwire [Kim and Spafford 1994]). They can
also monitor fine-grained control flow transfer and check its integrity (e.g., Abadi
et al. [2005]).

—Fast speed: In-VM monitoring also executes quickly. Compared to out-of-VM solu-
tions, in-VM state acquisition, security checks and enforcement are all executed
natively (without any world switch). For instance, for an in-VM monitor program,
the in-VM state can be directly accessed, and in-VM enforcement can be instantly
executed without any trapping into hypervisor.

Disadvantages. Although in-VM systems have been very successful, they have a
fundamental weakness: they can be attacked because they are executing at the same
privilege level as the system they are protecting (unless special care is taken to protect
the monitor, e.g., using special memory protection enforced by hypervisor). Malware,
such as kernel rootkits, or more generally intrusions or attacks, can often tamper with
all components involved in M(S, P), such as the sensors that collect state information
and the monitoring tools that enforce the security policy. More specifically, they can:

—Generate the false state S: To mislead the monitoring systems, attackers can modify
logs, the registry, proc files, or any other state information of interest with false data
(or even the code responsible for generating the data), as long as the system can
continue to function (e.g., no crashes).

—Tamper with the security policy P. Attackers can also modify the security policy P if
it is known. For instance, the attackers can modify the signature database to evade
their attacks.

—Tamper with the enforcing mechanism M. A wide range of methods can be used here.
For instance, if the security mechanism is based on system call hooking, attackers
can then modify the system call tables to bypass the security check; if the security
mechanism is deployed using a kernel module or individual monitoring process,
attackers can simply remove or shut down the monitoring module or process.

2.2. Out-of-VM–Based Monitoring

Due to the shortcomings of in-VM systems, researchers proposed moving monitoring
outside of the VM. In particular, hypervisor-based, or the so-called VMM-based, systems
use the hypervisor layer to secure the monitoring system. In theory, since hypervisors
operate at a lower level than the monitored system, they too are isolated and become
more secure. Hypervisor-based monitoring has been the subject of extensive research
in the past decade, as briefly mentioned in the previous section.

A hypervisor runs either directly on the host hardware (bare metal) or in another
host OS, and provides a software-controlled layer that resembles the host hardware.
Depending on where the hypervisor is located, hypervisors can be classified into two
types [Popek and Goldberg 1974]:

(1) Type 1 (bare metal) hypervisors, which run directly on the host’s hardware to control
the hardware and monitor the guest OS. Typical examples of such hypervisors
include Xen, VMware ESX, and Microsoft Hyper-V.

(2) Type 2 (hosted) hypervisors, which run within a traditional OS. In other words, a
hosted hypervisor adds a distinct software layer atop the host OS, and the guest
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OS becomes a third software layer above the hardware. Well-known examples of
type 2 hypervisors include KVM, VMware Workstation, VirtualBox, and QEMU.

Although the preceding type 1 and type 2 hypervisor classification has been widely
accepted (e.g., Barham et al. [2003] and Wang and Jiang [2010]), sometimes it insuffi-
ciently differentiates among hypervisors of the same type (e.g., KVM vs. QEMU). There-
fore, based on how the virtualization gets designed (hardware vs. software) [Adams and
Agesen 2006] and the guest OS and its application code is executed, we can have an-
other type of classification of hypervisors that will be used throughout this article:

(1) Native hypervisors that directly push the guest code to execute natively on the
hardware using hardware virtualization [Adams and Agesen 2006].

(2) Emulation hypervisors that translate each guest instruction for an emulated exe-
cution using software virtualization [Adams and Agesen 2006].

Examples of native hypervisors include Xen, KVM, VMware ESX, and Microsoft Hyper-
V, and emulation hypervisors include QEMU, Bochs, and the very early versions of
VMware-Workstation and VirtualBox (note that recent VMware-Workstation and Vir-
tualBox are able to execute the guest OS code natively). Since there is no binary code
translation involved, native hypervisor runs much faster than emulation hypervisor.

With a hypervisor, system developers have an additional control layer that allows
them to multiplex resources (e.g., scheduling the VMs in a way similar to scheduling
the processes) and migrate and control the VMs using software. In native hypervisors,
system developers can get control at certain hardware events (e.g., interrupt, page fault
exception). For emulation hypervisors, system developers can get the control any time
they want because all instructions can be conveniently trapped.

Advantages. Because of the great opportunities provided by hypervisors, we can push
the security monitoring into the hypervisor (namely from in-VM to out-of-VM). In-VM
monitors run inside the OS, whereas out-of-VM monitors run outside of the OS and
are located at the hypervisor layer. Although the two types of security monitors can
perform most of the same functions (e.g., identifying malware, detecting intrusions),
moving monitoring functionality out-of-VM has tremendous benefits. In particular, we
can have:

—Strong isolation (tamper resilience): Since the guest OS runs on a separate level
above the hypervisor, there is a world switch whenever control passes between the
two. The hypervisor thus provides strong isolation between the security monitors
and the attacks present in the guest OS. Unless the hypervisor has vulnerabilities, it
makes M and P tamper resilient, as they are located below the guest OS. Although
attackers may still generate false data, if the out-of-VM solutions directly extract
S from the raw data, they could also largely defend against false data generation
attacks.

—Transparent deployment: To deploy a security monitor at the hypervisor layer, we
have no need for an account in the guest OS, neither do we have any need to install
the software inside the OS. Instead, everything can happen transparently at the
hypervisor layer without even disrupting services (e.g., many read-only introspection
techniques can be transparently deployed during runtime).

—Complete view: Another advantage of out-of-VM over in-VM monitors is that the
hypervisor has full access to all of the memory, register, and disk state of the VM on
which the OS runs. We can observe each application’s state, as well as the kernel
state, including those invisible ones hidden by attackers, which is often challenging
to achieve through in-VM approaches.

—High cost savings: Out-of-VM also provides system developers unrestricted accesses
to virtualized resources. For instance, they can create a sandboxed environment, let
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real malware execute and observe its behavior, and then simply discard the malware-
damaged VM. They can also save a snapshot of the state of the guest OS, which can
be analyzed later without affecting the performance of the running VM. These are
features that in-VM systems often lack.

—Less vulnerability: In-VM systems usually have to trust the entire guest OS kernel,
which tends to have a huge code base. However, out-of-VM often only needs to trust
the underlying hypervisor, which has a smaller code base. For example, the Xen
hypervisor has less than one twelfth the number of lines of code than the Linux
kernel; this smaller attack surface leads to fewer vulnerabilities [Jain et al. 2014].

Disadvantages. Although out-of-VM monitoring offers many advantages over in-VM
monitoring, it also has limitations. Specifically,

—No abstractions: To out-of-VM monitors, there are no guest OS abstractions. There-
fore, all out-of-VM solutions face a challenge that must be addressed to perform
effective monitoring; they must bridge the semantic gap caused by moving monitors
outside of the guest OS. The details about the semantic gap problem are discussed
in Section 3.

—Slow speed: In addition, out-of-VM monitoring has to perform additional address
translation (what it observes is physical memory addresses, and it has to translate
between those and the guest’s virtual addresses) and world switching that traps
to the hypervisor for security checks and monitoring. It therefore usually is slower
compared to in-VM monitoring, although recently there were efforts (e.g., Li et al.
[2015]) to improve performance of the world switching.

2.3. Scope

In this article, we focus on the out-of-VM solutions that are below the OS layer but still
monitor the internal contents of the machine. Thus, we do not consider the out-of-VM
solutions that run on network devices (e.g., firewalls, gateways, and switches).

Strictly speaking, we technically should also exclude the hardware solutions that
often use extra hardware (e.g., PCI devices) for monitoring, since hardware usually
does not belong to the hypervisor layer, which is software by definition. However, we
still include them because out-of-VM monitoring can also be implemented using purely
hardware approaches. Not only do these hardware solutions also face the semantic
gap challenge, it can be even more difficult for them if a hypervisor is present in the
system; they must bypass the hypervisor layer to introspect the guest OS. Therefore,
for a complete view of all kinds of out-of-VM monitoring techniques, we include these
extra hardware approaches.

3. THE SEMANTIC GAP PROBLEM

The primary advantage of in-VM systems is their direct access to all kinds of OS-
level abstractions. However, when using a hypervisor, access to all of the rich semantic
abstractions inside the OS is lost. Although hypervisors have a grand view of the
entire state of the VMs they monitor, this grand view unfortunately consists of just
ones and zeros with no context. Therefore, there is a semantic gap between what we
can observe (Section 3.1) and what we want (Section 3.2), as illustrated in Figure 1, and
we must bridge it to provide effective monitoring services. In this section, we present
the semantic gap problem in greater detail.

3.1. What We Observe

Since hypervisors virtualize all of the computing resources and provide abstractions to
the guest OS, they can theoretically view any aspect of the guest OS’s state. However,
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Fig. 1. An overview of various approaches, applications, and deployment of hypervisor-based monitoring.

as shown in Table I, different types of hypervisors virtualize different logical resources;
consequently, they have different views.

Native hypervisors directly push guest code to run on the hardware. As such, they
cannot continuously monitor the execution of the guest OS (unless they use single-step
execution). Instead, they intercept control from interrupts or other hardware events.
They therefore have a snapshot view of the VM state, which is often acquired when
certain hardware events occur and allow the hypervisor to regain control. Hypervisors
of this type can observe the following:

—CPU registers: All of the CPU registers can be read by the hypervisor when it gains
control because it runs at the highest privilege level.

—Guest OS memory: The entire guest OS memory state can also be observed. However,
hypervisors only have access to physical addresses, which have to be translated to
virtual addresses while accessing each specific memory cell.

—Hard disk contents: Similar to the memory image, the content of the guest OS’s disk
image, if not encrypted, is also visible to the hypervisor.

—Hardware events: All hardware-level events, including timers, interrupts, and excep-
tions, can also be observed.

—I/O traffic: The hypervisor also oversees all I/O traffic, including network traffic,
disk I/O, and keystrokes.

Note that native hypervisors technically can obtain a contiguous view of the guest
OS (e.g., through single-step execution), but doing so is much too slow; it would ne-
cessitate trapping most events to the hypervisor, requiring constant world switching.
Therefore, most of the time, native hypervisors can only observe some special VMM-
level instructions (e.g., Intel VT instructions) and special kernel events such as in-
terrupts and exceptions (e.g., page faults if there is no extended or nested page table
enabled in the hardware).
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Table I. Low-Level Data and Desired Abstractions in Out-of-VM Monitoring

Snapshot View Contiguous View

What We Observe
C

P
U

R
eg

is
te

rs

P
h

ys
ic

al
M

em
or

y

D
is

k
D

at
a

H
ar

dw
ar

e
E

ve
n

ts

I/
O

D
at

a

P
ro

gr
am

C
ou

n
te

r

O
pc

od
e

&
O

pe
ra

n
d

C
on

tr
ol

F
lo

w
T

ra
n

sf
er

C
al

l-
S

ta
ck

C
on

te
xt

-S
w

it
ch

Native Hypervisor � � � � � ✗ ✗ ✗ ✗ ✗
Emulation Hypervisor � � � � � � � � � �
Emulation Hypervisor � � � � � � � � � �
Native Hypervisor � � � � � ✗ ✗ ✗ ✗ ✗

What We Want

V
ar

ia
bl

es
,O

bj
ec

ts

V
ar

ia
bl

es
an

d
T

yp
es

F
il

e
S

ys
te

m
an

d
F

il
es

In
te

rr
u

pt
/E

xc
ep

ti
on

s

P
ac

ke
ts

,B
u

ff
er

s

In
st

ru
ct

io
n

S
em

an
ti

cs

V
ar

ia
bl

es
,P

oi
n

te
rs

C
al

ls
,H

oo
ks

,B
ra

n
ch

es

E
xe

cu
ti

on
C

on
te

xt

P
ro

ce
ss

es
,T

h
re

ad
s

Data and Control State Abstractions

Emulation hypervisors can have a contiguous view of the guest-OS execution in
addition to the snapshot view observed by native hypervisors. In particular, they can
observe the following:

—Program counter: They can know which instructions get executed and their disas-
sembly code.

—Instruction opcode and operand: For each executed instruction, they can observe its
opcode and operand.

—Control flow transfer: All control flow transfers (e.g., call/jmp/ret, conditional
branches) can be observed, along with their source and destination addresses (if
applicable).

—Call stack: The stack can be traversed if a stack frame pointer exists, or instructions
can be transparently instrumented to build the call stack information.

—Context-switch: Each specific process or thread execution context can also be
observed.

3.2. What We Want

Given that hypervisors only have access to low-level binary data, we have to translate
the data into higher-level abstractions to provide useful monitoring services. In general,
these abstractions can be broken down into two types: data state abstractions and
control state abstractions.

Data state abstractions. Data state consists of the state of the current kernel objects
or the objects inside a monitored process (basically the memory state) as well as the
current CPU execution state. More specifically, we are interested in the following:
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—Variables, objects, and virtual address spaces: Given the physical memory of a guest
OS, we would like to know the location of kernel or monitored process variables (or
objects) of interest, the virtual address of a variable or object, and how to locate
virtual addresses in the physical memory.

—Data structure types and their connections: We also would like to know object types,
data structures, and their point-to relations (such that we can traverse them and
verify their integrity).

—File systems and files: Given the disk image, we are interested in the type of file
system being used and where files are located.

—Interrupts, exceptions, and other kernel events: For an observed hardware event,
we would like to obtain additional details about it; for an interrupt or exception, we
want to know which specific interrupt or exception it is. In addition, if possible, we
would like to recognize other kernel events, such as when a certain kernel object is
created or destroyed.

—Packets and buffers: From observed I/O data, we would like to differentiate between
network packets and DMA buffers. Even further, we would like to determine the
content and context of packets if possible.

Control state abstractions. Whereas data state provides a snapshot view of the run-
ning VMs, its granularity depends on when and how often the hypervisors take con-
trol. In native hypervisors, hypervisors can regain control only when certain hardware
events occur, whereas with emulation hypervisors, we can take control at arbitrary
times (depending on our interests). As mentioned in Section 3.1, obtaining a contigu-
ous view with native hypervisors, although possible, is far too inefficient for most
applications. Therefore, we mainly focus on emulation hypervisors for the control state
abstractions. More specifically, from fine grained to coarse grained, we are interested
in the following:

—Instructions, control path, and call stack: Knowledge of which instruction the VM
is executing, the control path to which it belongs, and the calling context can help
the out-of-VM monitor precisely understand the current state of the guest OS. These
fine-grained control states can often be observed by emulation hypervisors or single-
stepped native hypervisors.

—Function calls, system calls, library calls, and hooks: As instruction-level monitoring
usually significantly slows down the VM execution, we could instead monitor at
a coarse-grained granularity (e.g., at level of function call execution, or at certain
system calls, library calls, or hooks of monitor interest).

—Processes, threads, and execution context: When there is a context switch, we would
like to know which process (thread) is switched (from) to, as control flow is often
thread specific. For a given executing instruction, we also would like to know which
process or thread is executing this instruction, whether the execution is in user space
or kernel space.

4. APPROACHES

In this section, we summarize the general approaches that have been proposed for
bridging the semantic gap, as well as the specific applications the approaches are
targeting. In total, we have analyzed 64 papers (projects) that were published between
2003 and 2014 from several highly selective security and system venues.2 Note that
we do not aim to exhaustively examine all of the papers, as there are too many other

2The security venues include IEEE Security and Privacy (SP), ACM CCS, USENIX Security (in short
USENIX-SEC), NDSS, DSN, ESORICS, RAID, and ACSAC; system venues include SOSP, OSDI, ASPLOS,
USENIX-ATC, EuroSys, and VEE.
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Fig. 2. Number of published out-of-VM monitoring papers in the past decade.

papers published in other venues. The distribution of the number of papers published
per year along the out-of-VM monitoring topic is presented in Figure 2.

In total, there are five major approaches to bridging the semantic gap: the man-
ual approach (Section 4.1), debugger-assisted approach (Section 4.2), compiler-assisted
approach (Section 4.3), binary analysis–assisted approach (Section 4.4), and guest-
assisted approach (Section 4.5), as illustrated in Figure 1 and also reported in Table II.
The first four approaches are classified based on the constraints that an implementer
faces when building an out-of-VM monitor. At a high level, these constraints are based
on whether there is access to guest OS data structures, debug information, source code,
or binary code. In addition, there is an option to avoid the semantic gap altogether, at
the cost of potentially sacrificing the security advantages from VMI. This approach,
the guest-assisted approach, modifies a guest OS kernel or places a program inside to
pass information to the out-of-VM monitors.

All of these approaches vary in difficulty (when developers implement them) and
practicality. For example, although some manual approaches utilize detailed informa-
tion about a specific OS, they may be easier to implement. Different approaches also
vary in terms of the degree of automation. The manual approach by definition involves
little automation, whereas the other approaches may use varying amounts of automa-
tion in the way in which they bridge the gap, and the way in which they port their
implementation from one to another. In the following sections, we will examine each
approach in greater detail, and we will compare them in Section 4.6.

4.1. Manual Approaches

The most straightforward approach is to manually reconstruct the guest OS abstrac-
tions at the hypervisor layer, as long as we have the guest OS data structure infor-
mation. The layout, offset, and field type for each individual data structure, as well as
the connections (e.g., the point-to relations) between data structures of a guest OS, can
be determined through manual analysis of either documentation, debug information,
source code, or binary code. Then, by accessing the memory of the guest OS, hypervisor
programmers are able to use this detailed understanding of kernel structures to extract
information about the state of the guest OS, which can be used for various introspection
purposes. For example, the Linux kernel task structure (i.e., task_struct) is organized
in a double-linked list that contains all running processes. By traversing through this
list, we can retrieve all running processes in a system if there is no direct kernel object
manipulation (DKOM) [Petroni and Hicks 2007] attack inside the guest OS. This ap-
proach can also be used to retrieve information about the disk image containing files
stored on a system. As long as access to the disk image is available, knowledge of the
file system structure (e.g., ext2) can be used to traverse and access files.

Although manually determining data structures can be tedious, it is not a difficult
technical problem in that a human is able to perform the semantic interpretations.
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Table II. Summary of Different Out-of-VM Approaches in Bridging the Semantic Gap,
Their Applications, and Deployment

System Approaches Application Deployment

Name Venue M
an

u
al

D
eb

u
gg

er
A

ss
is

te
d

C
om

p
il

er
A

ss
is

te
d

B
in

ar
y

A
n

al
ys

is

G
u

es
t

A
ss

is
te

d

D
et

ec
ti

on

P
re

ve
n

ti
on

R
ec

ov
er

y

B
ar

e
M

et
al

H
os

te
d

N
at

iv
e

H
os

te
d

E
m

u
la

ti
on

E
xt

ra
H

ar
d

w
ar

e

LIVEWIRE [Garfinkel and Rosenblum 2003] NDSS ’03 � � �
COPILOT [Petroni et al. 2004] USENIX-SEC ’04 � � �
INTROVIRT [Joshi et al. 2005] SOSP ’05 � � �
ANTFARM [Jones et al. 2006] USENIX-ATC ’06 � � �
PFWA [Petroni et al. 2006] USENIX-SEC ’06 � � �
EKKYS [Egele et al. 2007] USENIX-ATC ’07 � � �
VMSCOPE [Jiang and Wang 2007] RAID ’07 � � �
VMWATCHER [Jiang et al. 2007] CCS ’07 � � �
PANORAMA [Yin et al. 2007] CCS ’07 � � �
SBCFI [Petroni and Hicks 2007] CCS ’07 � � � � �
SECVISOR [Seshadri et al. 2007] SOSP ’07 � � �
XENACCESS [Payne et al. 2007] ACSAC ’07 � � �
HOOKFINDER [Yin et al. 2008] NDSS ’08 � � �
LYCOSID [Jones et al. 2008] VEE ’08 � � �
OVERSHADOW [Chen et al. 2008] ASPLOS ’08 � � �
LARES [Payne et al. 2008] SP ’08 � � �
PATAGONIX [Litty et al. 2008] USENIX-SEC ’08 � � � �
HOOKMAP [Wang et al. 2008] RAID ’08 � � �
NICKLE [Riley et al. 2008] RAID ’08 � � �
ETHER [Dinaburg et al. 2008] CCS ’08 � � �
VICI [Fraser et al. 2008] ACSAC ’08 � � �
GIBRALTAR [Baliga et al. 2008] ACSAC ’08 � � � � �
ANUBIS [Bayer et al. 2009] NDSS ’09 � � �
KTRACER [Lanzi et al. 2009] NDSS ’09 � � �
POKER [Riley et al. 2009] EuroSys ’09 � � �
RKPROFILER [Xuan et al. 2009] RAID ’09 � � �
KOP [Carbone et al. 2009] CCS ’09 � � � � �
HOOKSAFE [Wang et al. 2009] CCS ’09 � � �
SLCL [Sharif et al. 2009] CCS ’09 � � � �
DGSTG [Dolan-Gavitt et al. 2009] CCS ’09 � � � �
OSVM [Oliveira and Wu 2009] ACSAC ’09 � � �
MAVMM [Nguyen et al. 2009] ACSAC ’09 � � �
HIMA [Azab et al. 2009] ACSAC ’09 � � � �
PMPDFGJ [Paleari et al. 2010] USENIX-SEC ’10 � � �
HYPERCHECK [Wang et al. 2010] RAID ’10 � � �
LIVEDM [Rhee et al. 2010] RAID ’10 � � �
TRAILOFBYTES [Krishnan et al. 2010] CCS ’10 � � �
PEDA [Zhang et al. 2010] ACSAC ’10 � � � �
HUKO [Xiong et al. 2011] NDSS ’11 � � �
SIGGRAPH [Lin et al. 2011] NDSS ’11 � � � � �
GATEWAY [Srivastava andGiffin 2011] NDSS ’11 � � � �
OSCK [Hofmann et al. 2011] ASPLOS ’11 � � �
VIRTUOSO [Dolan-Gavitt et al. 2011a] SP ’11 � � � � �
SHELLOS [Snow et al. 2011] USENIX-SEC ’11 � � �
SWJX [Srinivasan et al.2011] CCS ’11 � � �
GDXJ [Gu et al. 2011] SRDS ’11 � � � �
KRUISER [Tian et al. 2012] NDSS ’12 � � �
V2E [Yan et al. 2012] VEE ’12 � � � �
VMST [Fu and Lin 2012] SP ’12 � � �
MAS [Cui et al. 2012] USENIX-SEC ’12 � � � � �
DROIDSCOPE [Yan and Yin 2012] USENIX-SEC ’12 � � �

(Continued)

ACM Computing Surveys, Vol. 48, No. 1, Article 10, Publication date: August 2015.



10:12 E. Bauman et al.

Table II. Continued

System Approaches Application Deployment
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SYRINGE [Carbone et al. 2012] RAID ’12 � � �
VIGILARE [Moon et al. 2012] CCS ’12 � � �
BLACKSHEEP [Bianchi et al. 2012] CCS ’12 � � �
SENTRY [Srivastava and Giffin 2012] ACSAC ’12 � � � �
EXTERIOR [Fu and Lin 2013b] VEE ’13 � � � �
KI-MON [Lee et al. 2013] USENIX-SEC ’13 � � �
MOSS [Prakash et al. 2013] DSN ’13 � � � � �
TZB [Dolan-Gavitt et al. 2013] CCS ’13 � � �
HYBRIDBRIDGE [Saberi et al. 2014] NDSS ’14 � � � �
RTKDSM [Hizver and Chiueh 2014] VEE ’14 � � �
HYPERSHELL [Fu et al. 2014] USENIX-ATC ’14 � � � �
WCLM [Wu et al. 2014] DSN ’14 � � � �
TZ-RKP [Azab et al. 2014] CCS ’14 � � �
Total 64 33 5 8 6 12 55 12 6 27 19 30 6

Essentially, a human does the work to solve the semantic gap problem instead of relying
on other tools. However, the biggest limitation for such an approach is its extremely
low scalability. To support a large volume of different OSes, it requires tremendous
amounts of effort to manually build the data structure knowledge for each kernel and
rewrite the corresponding monitor programs.

Examples. Surprisingly, as reported in Table II, many out-of-VM monitors (33 out of
64) actually adopted such a manual approach. For instance, the first manual approach,
COPILOT [Petroni et al. 2004], retrieves the Linux kernel text and system call tables,
then verifies their integrity using an external PCI device (invisible to the guest OS).
The knowledge about the OS kernel data structures, such as where the code and system
call tables are located, is manually reconstructed. COPILOT specifically targets the 2.4
and 2.6 series of Linux kernels. It utilizes the fact that Linux kernel memory is not
paged and that kernel virtual addresses are linear mapped. Certain Linux kernel text
and data structures, including page tables, are located at a specific invariant location
in virtual memory and are mapped linearly, allowing for the retrieval of page tables
and thus the locations of data structures that would otherwise be difficult to determine.
Once the locations are known, it then reconstructs the guest OS semantics based on
kernel data structure knowledge that was also manually extracted. Some examples of
extracted abstractions are the organization of the kernel task_struct and what offsets
allow access to other data structures, such as mm_struct.

Followed by the COPILOT approach, dynamic spyware analysis (referred to as
EKKYS3) [Egele et al. 2007] and PANORAMA [Yin et al. 2007] also manually reconstruct
the guest OS abstractions (e.g., processes, files, browser, or kernel objects) to facilitate
malware analysis. VMWATCHER [Jiang et al. 2007] uses a guest view casting technique to
infer the state of the guest OS, and the casting is guided by manually retrieved kernel
data structure knowledge. XENACCESS [Payne et al. 2007] is a library for the monitoring
of guest OSes running on the Xen hypervisor. It provides a framework for accessing
the state of the guest OS and reducing the amount of work for guest introspection.

3Note that throughout the article, we refer to each discussed paper by its system name, if there is any, and
otherwise by the author’s initials.
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However, the library itself is developed based on the manually retrieved data structure
knowledge of the monitored kernel. Other manual approaches to bridge the semantic
gap include OVERSHADOW [Chen et al. 2008], LYCOSID [Jones et al. 2008], VMSCOPE [Jiang
and Wang 2007], HOOKFINDER [Yin et al. 2008], among others. The list of all of these
manual approaches is presented in the third column of Table II.

4.2. Debugger-Assisted Approaches

As data structure knowledge is usually available in the debugging symbols if a program
or OS kernel is compiled with the debug option, we can bridge the semantic gap with
the assistance of debuggers. This approach is also very straightforward. Specifically, if
the kernel is compiled with debug option, we can obtain debugging information from
off-the-shelf debuggers designed to analyze kernel dumps or live memory. From this
information, we can further derive the guest OS abstractions. Note that sometimes
we can directly retrieve the debugging symbols from software vendors (e.g., Microsoft
actually does release the Windows kernel symbols to the public), but for this case we
still have to develop the introspection routine based on the retrieved data structure
knowledge, which essentially is a manual approach. Similarly to the manual approach,
using a debugger makes this approach OS specific. In addition, the guest OS kernel
has to be recompiled with debugging symbols, which greatly limits the practicality of
this approach.

Examples. Not many systems use the debugger-assisted approach, and in total there
are only five such projects, as reported in Table II. Specifically, the first debugger-
assisted approach, LIVEWIRE [Garfinkel and Rosenblum 2003], which pioneered the
concept of VMI, leverages a modified kernel crash dump analysis tool (essentially a
debugger) to interpret the raw binary data of a memory dump generated by a kernel
compiled with debugging information. The advantage of this approach is that the
debugger tool can directly return the guest OS abstractions without developing any
additional code. For instance, with crash tool [Anderson 2003], LIVEWIRE uses the built-
in commands to retrieve the list of running process (by invoking the ps command),
opened files (with the files command), live kernel objects (with the kmem command),
and the kernel call stack for each process (with the bt command). Using the semantic
information obtained from these commands, LIVEWIRE then determines whether the
guest OS has been compromised.

Additionally, INTROVIRT [Joshi et al. 2005] leverages the debugging symbols to set
“breakpoints” to inspect and execute vulnerability specific predicates at the hypervi-
sor layer. HOOKMAP [Wang et al. 2008] resolves kernel symbols by querying from the
system.map file for kernel text and nm utilities for kernel modules. As a rootkit profiler,
POKER [Riley et al. 2009] also compiles the Linux kernel with debugging flags and uses
a customized debugger (i.e., gdb) to traverse kernel objects and provide kernel object
maps. These object maps are used to facilitate the understanding of kernel rootkit be-
havior. MOSS [Prakash et al. 2013] leverages the Windows debugging symbols to mutate
the fields of the kernel data structure out-of-VM with duplicate-value–directed seman-
tic field fuzzing to estimate the severity of kernel data structure manipulation attacks.

4.3. Compiler-Assisted Approaches

In the compiler-assisted approach, the source code of the OS is used (or modified) to
automatically construct a data structure graph (or inform the hypervisor with the data
of interest). This approach leverages the power of the compiler to infer where control
will potentially flow to as the OS runs, taking advantage of type definitions and context
information in the OS source to determine the types of generic pointers.

The compiler also helps to automate the process of finding abstractions, or the kernel
is modified (or automatically instrumented) to generate the abstractions if the original
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source code does not contain them, but this approach relies on having access to the
source. This approach also requires one to repeat the analysis on any new kernels that
need the VMI solutions.

Examples. In total, there are eight projects that use the compiler-assisted approach.
The first approach of this type, SBCFI [Petroni and Hicks 2007], obtains the locations
of kernel abstractions by first extracting global variables and creating a graph of ker-
nel variable types from the kernel source code, then using that data to generate code
to traverse pointers accessible from those variables. The goal of SBCFI is to check the
kernel control flow integrity (CFI). To this end, it generates the control flow graph
from kernel source code. By performing periodic checks on the snapshots of the ker-
nel against an initially generated flow graph, it can determine whether the kernel has
been compromised. CFI [Abadi et al. 2005] of the kernel can be determined by verifying
static and dynamic pointers used by the kernel. Static pointers include function point-
ers stored in system call tables or jump tables used in the program. Dynamic function
pointers include generic pointers like void* in C and indirect function calls like in
select statements or unions, which is determined during the execution. To resolve dy-
namic pointers, SBCFI requires source annotations to recognize certain pointer types,
including generic pointers.

KOP [Carbone et al. 2009] recognizes the limitation in SBCFI and proposes to compute
all possible types of generic pointers using interprocedural point-to analysis, resolve
type ambiguities with pattern matching, and determine the boundary of dynamic ar-
rays with kernel memory pool knowledge. MAS [Cui et al. 2012] further improves KOP

to provide a more reliable type graph with a new memory traversal algorithm that
supports error correction (i.e., cutting off invalid pointers) and stops error propagation.

Other compiler-assisted approaches include GIBRALTAR [Baliga et al. 2008], which
leverages CIL [Necula et al. 2002] to acquire data structure definitions, and SIGGRAPH

[Lin et al. 2011], which uses gcc to derive kernel data structure invariants. LIVEDM
[Rhee et al. 2010] leverages kernel source code to distinguish different heap data struc-
tures and then constructs the kernel heap graph to facilitate in understanding kernel
malware behavior. OSCK [Hofmann et al. 2011] extracts the memory management data
structures from kernel source code and then verifies the type safety properties for the
kernel heap using a clever linear scanning approach. GATEWAY [Srivastava and Giffin
2011] recompiles kernel source code with special padding such that a binary rewriter
can be applied and the control flow transfer can be observed and enforced at the hy-
pervisor layer.

4.4. Binary Analysis–Assisted Approaches

The binary analysis–assisted approach is used in cases where only the compiled binary
of an OS is available. It does not require access to any special versions of the OS,
any debug information, or any defined kernel data structures. Instead, this approach
analyzes the compiled (symbol stripped) OS kernel binary code and reconstructs the
guest OS abstractions.

This approach is quite sophisticated because it does not obtain abstractions or defi-
nitions from any other sources. Everything has to be determined either by performing
dynamic binary analysis on register values, accessed memory, and executed instruc-
tions, or by performing static binary analysis on raw code and data. However, this
makes the final result more practical for VMI, as this can be performed by anyone and
does not rely on a special version of an OS.

Analysis of binary code can be done both offline and online. For offline analysis, ab-
stractions are developed by observing how a trusted version of an OS executes while
inspecting the kernel states. Then, from the information obtained by these observa-
tions, a tool can be trained to assist out-of-VM monitors. Online analysis, on the other
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hand, can occur dynamically with a live system. Specifically, it observes how the data
gets accessed, then reconstructs the abstractions via online dataflow analysis and data
redirection.

Examples. Interestingly, six projects used the binary analysis–assisted approach.
In particular, the first binary code analysis approach, VIRTUOSO [Dolan-Gavitt et al.
2011a], demonstrates that it is possible to extract the instruction traces from the exe-
cution of native inspection commands and the OS kernel, then translate the traces into
an introspection program. Three different phases are involved while using VIRTUOSO:
training, analysis, and runtime environment generation. Training involves taking mul-
tiple traces of an introspection program (e.g., ps). The analysis phase involves looking
through instructions in the trace to identify unwanted instructions like malloc. The
instructions needed are then used to generate an executable. The generated program
can then run as a stand-alone outside the guest OS in the hypervisor layer to perform
the introspection.

As VIRTUOSO involves an offline training phase to generate the trace that suffers the
coverage issues, VMST [Fu and Lin 2012, 2013a] shows an online binary code reuse ap-
proach without training to enable native inspection programs to automatically become
introspection programs. With VMST, no training is needed, as the data of introspection
interest is automatically identified and accessed by the native inspection process. EX-
TERIOR [Fu and Lin 2013b] essentially uses the same binary analysis technique from
VMST but extends it for guest OS writable introspection. BLACKSHEEP [Bianchi et al.
2012] avoids the complicated binary code analysis and instead uses a novel memory
comparison approach to identify the kernel rootkit attack points from binary data. TZB
[Dolan-Gavitt et al. 2013] shows that we can also use a mining approach to identify
hook points in both the OS kernel and applications from binary executions. Combining
the strengths of both the training-based approach from VIRTUOSO and the online kernel
data redirection approach from VMST, HYBRIDBRIDGE [Saberi et al. 2014] improves the
performance of VMST by one order of magnitude through training memoization and
decoupled execution.

4.5. Guest-Assisted Approaches

The guest-assisted approach is different from the other approaches in that it avoids the
semantic gap altogether, at the cost of potentially sacrificing the security advantages
that come from working outside the VM (unless certain special care is taken). In this
approach, a program is placed inside the guest OS to give the monitor information
about the system. It may also involve adding hooks into the guest or simply running
the monitoring system inside it. Since the program or the hook is running inside the
OS, it has full access to all abstractions that normally are lost when moving the monitor
outside the VM. However, this also potentially leaves it vulnerable to all of the same
dangers as an in-host monitor, and thus all of the information it gives to the hypervisor-
based monitor becomes unreliable if the system is compromised and no special care is
taken to protect the inside component.

This approach is easier compared to other approaches; it avoids the semantic gap
problem, it can easily work with any OS that can run the in-guest program, and it has
access to all guest system information needed. However, the security concerns raised
by using this approach are the same concerns that led to out-of-VM monitoring in the
first place. Therefore, implementations often seek to use the hypervisor for additional
protection for their in-VM monitor code.

Examples. There are 12 projects that use the guest-assisted approach. The pioneer
work, LARES [Payne et al. 2008], inserts hooks in a guest VM and protects its guest com-
ponent by using the hypervisor for memory isolation with the goal of supporting active
monitoring. Unlike passive monitoring, active monitoring requires the interposition of
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Table III. Definitions of the Metrics Used to Compare Out-of-VM Approaches

Metric Definition
Flexibility How many constraints the approach relies on

(e.g., if the approach relies on access to OS source code, it is less flexible)
Coverage How many abstractions can be derived; the scope of the approach
Easiness How difficult the approach is to implement
Practicality How useful and adoptable the approach is for real-world applications
Automation How much can be done automatically instead of by hand

kernel events. As a result, it requires the monitoring code to be executed inside the
guest OS, which is why it essentially leads to the solution of inserting certain hooks
inside the guest VM. The hooks are used to trigger events that can notify the hypervisor
or redirect execution to an external VM. More specifically, LARES design involves three
components: a guest component, a secure VM, and a hypervisor. The hypervisor helps
to protect the guest VM component by memory isolation and acts as the communica-
tion component between the guest VM and the secure VM. The secure VM is used to
analyze the events and take actions necessary to prevent attacks.

In another work, secure in-VM monitoring (SLCL) [Sharif et al. 2009] places the
monitoring code within the guest OS and uses the power of the hypervisor to isolate the
region occupied by the monitor from attackers in the guest OS. HOOKSAFE [Wang et al.
2009] inserts an in-guest short-lived kernel module to set up the hook indirection layer,
then enforces hook protection at the hypervisor layer. HUKO [Xiong et al. 2011] inserts
a trusted driver into the guest OS to notify the hypervisor about the allocation and
reclamation of kernel memory, and also labels the owner subject of each kernel page for
the hypervisor to enforce a mandatory access control. Process implanting (GDXJ) [Gu
et al. 2011] leverages the execution context of an in-guest process and replaces its
code with inspection or management utilities to perform introspection and recovery.
Process outgrafting (SWJX) [Srinivasan et al. 2011] inserts a kernel module into a
guest VM and redirects the system call execution of a monitored process to a guest
VM for behavior analysis. SYRINGE [Carbone et al. 2012] uses a novel guest assisted
function-call injection and localized shepherding technique to verify the execution of
guest code. Rather than redirecting the data access (as in VMST), HYPERSHELL [Fu et al.
2014] and WCLM [Wu et al. 2014] redirect the execution of system call from the secure
VM to the guest VM, with an assisted helper process at the guest VM, to bridge the
semantic gap.

More broadly, the approach that requires kernel source code modification (or in-
strumentation) to proactively report state changes to the hypervisor is also guest as-
sisted. For instance, OSVM [Oliveira and Wu 2009] modifies guest kernel source code
to add the Biba integrity level for kernel subjects and objects, then collaboratively
enforces the Biba integrity model at the hypervisor layer. KRUISER [Tian et al. 2012]
modifies kernel source code, especially the heap management data structure to add
canaries, then verifies the canaries at the hypervisor layer to detect heap overflow.
SENTRY [Srivastava and Giffin 2012] modifies the kernel source code to partition the
kernel data structure layout such that it can detect and prevent malicious modifications
to critical kernel data structures that are protected by the hypervisor.

4.6. Summary and Comparison

As discussed earlier, different approaches have different constraints, pros, and cons. In
the following, we compare them in greater detail. We provide definitions of each metric
in Table III and compare them in Table IV. Specifically, we compare each approach
from the degree of flexibility (flexibility of the approach; less constraints, more flexible),
coverage (how many abstractions can be reconstructed, and how much of the guest OS
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Table IV. Comparison Between Different Out-of-VM Approaches

Note: The � symbol denotes a low degree for that comparison item,
� denotes a medium degree, and denotes a high degree.

state can be observed), easiness (how easy it is to implement this approach), practicality
(how usable and adoptable this is for real-world applications), and automation (how
much can be done automatically instead of by hand). We order these approaches based
on the year they first appeared.

Debugger assisted. The debugger-assisted approach uses the debugging facilities to
help provide semantic information about the guest OS. Since it relies on access to debug
info, it has only moderate flexibility, but the rich amount of data from debugging infor-
mation also provides high coverage. Out-of-VM tools are relatively easy to write for this
approach (high easiness), as it can use existing OS debugging tools (high automation).
For instance, LIVEWIRE directly reuses the available built-in commands to retrieve the
kernel semantic information. With the debugging information, the monitoring tools
can also be used to analyze a snapshot of the VM after obtaining system information.
Obtaining debug information, however, may involve recompiling the source in debug
mode or running a special debug version of the OS if the source is not available. It is
not always practical to expect a user to run a debug version of an OS, and such an
OS often has to be recompiled from kernel source code. Due to these weaknesses, this
approach has low practicality.

Manual. The manual approach can be taken regardless of what resources are avail-
able or constraints exist, and therefore it has high flexibility. It can analyze source code
or debugging information, or it can even reverse engineer the binary code to determine
the forms and locations of kernel data structures of interest. However, in this case, this
approach has low coverage because each data structure must be manually identified.
Alternatively, usable definitions of data structures may already exist. Out-of-VM tools
have to be manually developed from scratch, resulting in low automation. However, al-
though it is tedious, it is not difficult to create these tools (high easiness). This approach
has moderate practicality, as it can be conducted by anyone under most circumstances,
but its low scalability could hinder its practical usage.

Compiler assisted. The compiler-assisted approach requires access to the source code
of the OS, meaning that it has low flexibility and low practicality. Because it attempts
to automate the process by using the compiler on the source to follow potential program
flow and reason about the abstractions, it has high automation. Some data structures
can be automatically generated by following static information in the source, whereas
some will also depend on certain values at runtime. Besides the complete view of static
data, some implementations have managed to track dynamic data, and therefore this
approach has high coverage. However, a compiler pass is not easy to implement and
dynamic data can also be hard to determine, so it has moderate easiness.

Guest assisted. The guest-assisted approach often installs a helper program inside
a guest OS or modifies the existing system to export the useful information to out-
of-VM monitors. Since this approach avoids the semantic gap problem, it has high
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easiness. It has moderate flexibility, as it either requires the authorization of the guest
OS to install the helper software or recompiles the kernel. These requirements lead
to moderate practicality. If it needs to, it can cover almost everything (high coverage),
because it can access all of the guest OS abstractions. The automation is not as high
as purely out-of-VM solutions (moderate automation), as it requires a step to install
software in the guest OS or recompile the guest OS kernel.

Binary analysis assisted. The binary analysis–assisted approach is used when only
binary code is available, and therefore it has high flexibility. It attempts to determine
abstractions through either static analysis or dynamic analysis by observing the be-
havior of compiled code as it runs. As such, it can be used to effectively introspect
closed-source OSes. Binary code analysis can be performed both in real time in a live
system or can be used to train tools for later use. The approach is much harder to
implement (low easiness), but it has high practicality in that it can perform many out-
of-VM monitoring functions. Being able to reason the abstractions faithfully from the
binary code and even reuse certain legacy binaries, it also has high coverage and high
automation.

5. APPLICATIONS

Over the past decade, out-of-VM monitoring has been adopted for many security ap-
plications due to the huge benefits of moving in-VM monitors out of VM (as discussed
in Section 2). In general, we can classify the security applications into attack detection
(Section 5.1), attack prevention (Section 5.2), and attack recovery (Section 5.3); these
are the three dimensions of responding to attacks [Bishop 2002]. We will discuss how
out-of-VM solutions have been applied in these dimensions in greater detail.

5.1. Detection

The first step for any monitoring system is to collect the state S to allow M to make
decisions (recall the definition in (1)). The observed state can be of the kernel level or
user level and may be benign or malicious. Any observed changes can be classified as
either code modification or data modification.

After observing benign or malicious behaviors in a system, we can use the information
obtained from these observations to detect attacks. Based on where attacks occur, we
classify them into either kernel- or user-level attacks. In addition, based on whether
attacks tamper with code or data, we classify them as code attacks or data attacks.
In addition, out-of-VM monitors can also be used purely for behavior analysis (e.g.,
malware analysis) and forensic investigations (after an attack has happened). In the
following paragraphs, we review these specific applications.

Kernel level. Kernel-level attacks have administrative privileges and can tamper
with both the OS kernel and application processes. Kernel rootkits are examples of
such attacks. Detecting kernel anomalies often requires building a model that cap-
tures benign kernel behavior. Any deviation from benign behavior can be flagged as
attacks. Several systems are concerned with observing benign kernel data structures.
In particular, SBCFI [Petroni and Hicks 2007], KOP [Carbone et al. 2009], and MAS [Cui
et al. 2012] statically analyze kernel source code to build the benign kernel data struc-
ture graph. OSCK [Hofmann et al. 2011] also first uses static analysis to extract the
heap management data structure of benign kernels. LIVEDM [Rhee et al. 2010] uses
dynamic analysis to build a kernel heap graph. DGSTG [Dolan-Gavitt et al. 2009] applies
fuzzing techniques to derive value-invariant signatures of kernel data structures, and
SIGGRAPH [Lin et al. 2011] uses benign snapshots and kernel data structures extracted
from source code to derive the graph signatures.

Another option is to observe the malicious behavior caused by kernel malware (for
misuse detection). HOOKFINDER [Yin et al. 2008] observes how hook behavior gets
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affected by kernel malware. KTRACER [Lanzi et al. 2009] extracts malicious behav-
iors from kernel rootkits; POKER [Riley et al. 2009] and RKPROFILER [Xuan et al. 2009]
also dynamically observe how rootkits execute in OS kernels. This information is often
helpful for deriving the effective signatures to capture the attacks.

User level. There are also numerous user-level attacks, such as viruses, worms, or
spyware, that harm the system at the user level. To determine whether a process
is malicious, a monitor has to analyze its behavior. Although in-VM solutions might
use something like strace to trace in-VM system call behaviors, out-of-VM solutions
can also achieve such functionality. For example, VMSCOPE [Jiang and Wang 2007]
interprets system call events at the hypervisor layer, and process outgrafting (SWJX)
[Srinivasan et al. 2011] uses dual VMs to trace the system call behavior of benign pro-
cesses. EKKYS [Egele et al. 2007] analyzes browser plugins to detect spyware. PANORAMA

[Yin et al. 2007] analyzes the whole systemwide information flow to analyze the mali-
cious behavior inflicted by malware.

Code modification. Code modification detection involves the identification of kernel
code changes. By performing hashing of kernel text, periodic recalculation is done
to determine whether kernel text has changed—LIVEWIRE [Garfinkel and Rosenblum
2003] and COPILOT [Petroni et al. 2004] use hashing to detect any unauthorized code
modification. SBCFI [Petroni and Hicks 2007], PATAGONIX [Litty et al. 2008], HIMA [Azab
et al. 2009], RKPROFILER [Xuan et al. 2009], POKER [Riley et al. 2009], OSCK [Hofmann
et al. 2011], VIGILARE [Moon et al. 2012], and KI-MON [Lee et al. 2013] also feature such
strong code modification detection. In contrast, some systems offer very weak detection
in code modification, such as ANTFARM [Jones et al. 2006], which is just a framework,
and therefore users must extend it to obtain sufficient detection.

Data modification. Data modification includes changes to critical kernel objects such
as function pointers and system call tables. Data modifications can be detected by a
signature-based approach [Dolan-Gavitt et al. 2009; Petroni et al. 2004]. Kernel mem-
ory can also be traversed to discover kernel data structures that contain information
about the kernel state—for example, traversing task_struct to obtain a list of processes
or module list to obtain a list of loaded kernel modules. PFWA [Petroni et al. 2006],
VMWATCHER [Jiang et al. 2007], KOP [Carbone et al. 2009], DGSTG [Dolan-Gavitt et al.
2009], POKER [Riley et al. 2009], RKPROFILER [Xuan et al. 2009], LIVEDM [Rhee et al.
2010, 2011], SIGGRAPH [Lin et al. 2011], VIRTUOSO [Dolan-Gavitt et al. 2011a], VMST [Fu
and Lin 2012], MAS [Cui et al. 2012], BLACKSHEEP [Bianchi et al. 2012], SENTRY [Srivas-
tava and Giffin 2012], and KI-MON [Lee et al. 2013] are examples of systems that detect
kernel data modification. Among them, PFWA, KOP, POKER, RKPROFILER, LIVEDM, MAS,
and KI-MON have strong data detection because they can even detect the modification
of dynamic kernel objects.

Besides directly modifying the function pointer or system call table, there is an-
other type of attack that can be triggered by exploiting memory errors such as buffer
overflows. To detect such a type of attack, KRUISER [Tian et al. 2012] instruments and
recompiles the kernel source code, and at the hypervisor layer, it detects whether there
are any heap overflows.

Forensics and analysis. Forensics involves investigative analysis of how a system
was attacked after the fact. The first step for any forensics investigation is to collect
the state of an infected system. Signature-based scanning (e.g., DGSTG and SIGGRAPH)
or other systems such as TRAILOFBYTES [Krishnan et al. 2010], VIRTUOSO [Dolan-Gavitt
et al. 2011a], SHELLOS [Snow et al. 2011], and VMST [Fu and Lin 2012] can all be used
to perform forensic analysis on the victim VM.

Out-of-VM monitors have also been used for malware analysis. For instance, ANU-
BIS [Bayer et al. 2009] uses the VMM to observe system calls and APIs executed by
malware, and it supports other advanced program analysis such as slicing and taint
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analysis. ETHER [Dinaburg et al. 2008] provides a high-fidelity environment to analyze
malware. EKKYS [Egele et al. 2007], PANORAMA [Yin et al. 2007], and V2E [Yan et al.
2012] can also be used in such a scenario, and so can malware profilers such as KTRACER

[Lanzi et al. 2009], POKER [Riley et al. 2009], RKPROFILER [Xuan et al. 2009], and MOSS

[Prakash et al. 2013, 2014].

5.2. Prevention

The ultimate goal for any security mechanism is to prevent attacks. This often requires
active monitoring and the ability to intercept an attack. Similarly to our classification
of detection applications in Section 5.1, we also classify existing prevention applications
into kernel- and user-level protection, as well as code and data protection.

Kernel level. In addition to kernel code and data protection described later, several
projects aim to separate kernel modules from the rest of the kernel, because kernel
modules are often the vulnerable points of an OS kernel. In particular, kernel module
isolation often allocates special memory address spaces for kernel modules. Verification
is done to ensure that the kernel modules do not perform any unauthorized access to
the kernel area. This helps to protect the kernel from malicious modules. HIMA [Azab
et al. 2009] and HUKO [Xiong et al. 2011] use hardware-assisted paging to isolate ker-
nel extensions from the kernel. GATEWAY [Srivastava and Giffin 2011] isolates devices
drivers in a similar way and at the same time patches indirect calls in driver code for
the interception.

User level. Similarly to kernel module isolation, process isolation is achieved by
running a process in an isolated address space, which is protected by a hypervisor
from unauthorized modification. Implementations include SLCL [Sharif et al. 2009] and
HIMA [Azab et al. 2009]. Although in SIM this technique is used to protect the moni-
toring process, the idea can be extended for use in monitoring and isolating ordinary
processes as well, as shown in HIMA.

Code protection. Code protection involves protecting the kernel text by making the
kernel text memory region unchangeable. Another technique under code protection is
to encrypt the guest OS memory to prevent unauthorized access. For instance, OVER-
SHADOW [Chen et al. 2008] encrypts the guest VM pages such that out-of-VM tam-
pering becomes impossible. In another approach, SECVISOR [Seshadri et al. 2007] uses
hardware-assisted memory protection and verifies code integrity as well. PATAGONIX

[Litty et al. 2008] verifies the authenticity of the code before it is allowed to execute, as
does HIMA. These code protections are very strong.

Data protection. Data protection aims to protect data structures, system call ta-
bles, and kernel objects in memory, including both static and dynamic data. Protecting
dynamic data involves traversing the kernel heap to discover dynamic data objects.
HOOKSAFE [Wang et al. 2009] moves all kernel hooks to a separate address space and
prevents memory access writes to this region. Although HOOKSAFE protects the kernel
hooks completely, it does not protect other kernel data. It thus has moderate complete-
ness, as shown in Table II. NICKLE [Riley et al. 2008], LARES [Payne et al. 2008], OSVM
[Oliveira and Wu 2009], and SENTRY [Srivastava and Giffin 2012] all use memory access
restrictions to protect kernel data. OVERSHADOW [Chen et al. 2008] encrypts the pages
to defeat any malicious process attempting to view critical data. It hence offers strong
protection, as it is very challenging for attackers to modify the data.

5.3. Recovery

The ability of a system to automatically recover from an attack helps reduce the need
of human intervention whenever there is a problem. Once we have detected an attack,
if it is possible to directly fix it, the system can remain online without any interruption
in service. This will be particularly useful for services that require high availability.
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Table V. Definitions of the Metrics Used to Compare Out-of-VM Monitor Deployment Types

Metric Definition
Flexibility How many constraints are imposed on the monitor
Security How well the deployment type provides for security coverage
Invisibility How difficult the presence of the monitor is to detect from within the VM
Speed How much system slowdown occurs compared to no monitor running
Space How much storage capability the deployment type possesses

Table VI. Comparison Between Different Out-of-VM Monitor Deployment Types

Note: The � symbol denotes a low degree for that comparison item,
denotes a medium degree, and denotes a high degree.

However, as shown in Table II, even among repairable attacks there has been signifi-
cantly less attention in attack recovery.

VICI [Fraser et al. 2008] made an early attempt for VMM-based guest OS recovery.
It performs code repair that reverts kernel text to its original state once modified
kernel code has been detected. It also can use a rollback mechanism, which involves
periodically taking a snapshot of the VM as it runs. These snapshots can be used to
restore the VM to a known good state in the event of an attack. PMPDFGJ [Paleari et al.
2010] automatically generates malware remediation procedures using an emulated
VM for malware attacks, then executes them to restore the infected machine to a good
state. GDXJ [Gu et al. 2011] is able to inject a cleanup process into the guest OS
and hence features some recovery capability. EXTERIOR [Fu and Lin 2013b] repairs a
limited number of kernel objects, such as the system call tables, through cross-machine
checking. We must note that none of the existing work can achieve a high degree of
recovery except with rollback, as there are certainly some attacks that cannot be fixed
and require either a system reinstall or restoring from an earlier snapshot.

6. DEPLOYMENT

Another important consideration when implementing an out-of-VM monitor is where it
will be deployed. Factors considered when determining which layer to deploy to include
flexibility, security, visibility, speed, and space constraints. The detailed definition about
these metrics is presented in Table V. There are advantages and disadvantages to
each deployment type, and we have categorized the different deployment methods in
Table VI. Note that all hypervisor deployments have high space because they are not
working with limited memory and moderate invisibility due to hypervisor detection
techniques such as timing analysis. In the following, we discuss them in greater detail.

Bare metal. One deployment method uses bare metal hypervisors such as Xen. Such
deployment offers moderate flexibility and improved performance (high speed) because
the guest code is run directly on the hardware. It also allows for monitoring of privi-
leged instructions and hardware events. This deployment lacks the degree of security
coverage compared to some of the other deployment methods (moderate security), how-
ever, as it sees a snapshot view of the guest OS only when certain kernel events occur
(e.g., certain interrupts). Typical implementations include SECVISOR [Seshadri et al.

ACM Computing Surveys, Vol. 48, No. 1, Article 10, Publication date: August 2015.



10:22 E. Bauman et al.

2007], ETHER [Dinaburg et al. 2008], XENACCESS [Payne et al. 2007], MAVMM [Nguyen
et al. 2009], and HUKO [Xiong et al. 2011], among others.

Hosted, native hypervisor. Another deployment method is to use a hosted, native
hypervisor such as KVM. This type of hypervisor offers the high flexibility of using host
OS abstractions to implement the hypervisor service. It also allows for the full-speed
execution of guest code (high speed), although it still shares the same snapshot view
as bare metal hypervisors (moderate security). Implementations that use this type of
hypervisor include SLCL [Sharif et al. 2009], HOOKSAFE [Wang et al. 2009], GATEWAY

[Srivastava and Giffin 2011], OSCK [Hofmann et al. 2011], SHELLOS [Snow et al. 2011],
and SWJX [Srinivasan et al. 2011].

Hosted, emulation hypervisor. Unlike the two previous methods, deploying along-
side a hosted emulation hypervisor offers the ability of full software control of the
monitoring service. A typical hypervisor for this type of deployment is QEMU or the
earlier versions of VMware Workstation and VirtualBox. Emulation hypervisors allow
all of the instructions to be intercepted, which offers high flexibility and good security
coverage. However, this technique suffers from performance degradation (low speed)
because of the overhead of emulating instructions at the software layer. This slow-
down also results in moderate security due to it increasing the feasibility of timing
attacks. Implementations using this deployment method include LIVEWIRE [Garfinkel
and Rosenblum 2003], VMWATCHER [Jiang et al. 2007], HOOKMAP [Wang et al. 2008],
and VMST [Fu and Lin 2012].

In addition, from Table II, we can observe that there are some systems that are
agnostic to any particular type of hypervisor and can be deployed into any of them.
This is especially true for memory-based monitoring systems, such as SBCFI [Petroni
and Hicks 2007], GIBRALTAR [Baliga et al. 2008], KOP [Carbone et al. 2009], DGSTG

[Dolan-Gavitt et al. 2009], SIGGRAPH [Lin et al. 2011], VIRTUOSO [Dolan-Gavitt et al.
2011a], and MAS [Cui et al. 2012].

Extra hardware. A more secure method is to deploy the out-of-VM monitoring on
external hardware. By using a separate device for deploying the monitoring service,
the risk of attack is greatly reduced. The primary shortcoming is that this deployment
approach is less flexible (low flexibility). Many external devices may also have limited
memory, and this limits the capabilities of a monitor (low space). External hardware
involved in this type of deployment includes PCI cards, which have been used in COPILOT

[Petroni et al. 2004], PFWA [Petroni et al. 2006], and HYPERCHECK [Wang et al. 2010].
Extra hardware may not always have sufficient space due to the high cost compared to
other deployments, but it can offer comparatively high security, high invisibility, and
high speed. In addition, recently there have been special extra hardware components
designed to integrate with the system bus to verify the kernel integrity using a bus
snooping technique (e.g., Lee et al. [2013] and Moon et al. [2012]).

7. DISCUSSIONS AND FUTURE DIRECTIONS

Although there has been a large amount of research in out-of-VM monitoring, there are
still lots of opportunities for future research. In this section, we discuss the remaining
research problems and shed light on future directions.

7.1. Improving Hypervisor Security

When performing out-of-VM monitoring, it is important to determine what to trust
when designing tools to derive guest OS abstractions, as introspection depends on the
integrity of the reconstructed data to understand the state of the guest OS. Jain et al.
[2014] recently emphasized that many introspection techniques make assumptions
about the guest OS that may allow a compromised or malicious guest OS to circum-
vent detection. These assumptions include the OS being benign during training, that
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it is possible for abstractions to be learned by an automated process (for nonmanual
approaches), that attacks are long-lived enough to be detected (if only checking system
state periodically), and that it is feasible to whitelist modules in deployment. For exam-
ple, as mentioned earlier, the snapshot view of native hypervisors might miss highly
transient attacks. Depending on the approaches taken, the validity of assumptions
varies. It will be important for future out-of-VM solutions to clearly state their security
assumptions and expected use cases to better define their capabilities.

On the other hand, the security of out-of-VM monitors relies on the security of hy-
pervisors. As discussed in Section 2.2, out-of-VM has significantly fewer attack vectors
compared to in-VM solutions, but recently there have been attacks that aim to compro-
mise hypervisors and carry out malicious functionality more stealthily. Notable attacks
include Blue Pill [Laurie and Singer 2008], SMM-based rootkits [Embleton et al. 2008],
PCI-based rootkits [Heasman 2006], SubVirt [King et al. 2006], SubXen [Wojtczuk
2008], and reactive VMI [Fu et al. 2013].

To combat the threat against hypervisors, several solutions from different angles
have been proposed. They either push the out-of-VM monitors one layer down into
logically isolated hardware, improve the security of the hypervisor, reduce the code
base and attack surface of hypervisors, or force the OS to verify itself. More specifically:

—Pushing one layer down: Since the hypervisor layer can secure the execution of
the guest OS one layer above it, naturally we can protect hypervisor execution by
pushing the monitor one layer down into the hardware. Recent efforts include HY-
PERSENTRY [Azab et al. 2010], CLOUDVISOR [Zhang et al. 2011], HYPERCOFFER [Xia et al.
2013], and MGUARD [Liu et al. 2013]. HYPERSENTRY leverages the system management
mode (SMM) of the x86 system to monitor hardware state. SMM can access the host
memory and CPU registers to check the integrity of a running system. CLOUDVI-
SOR introduces a tiny security monitor underneath the commodity hypervisor using
nested virtualization to protect both the VMMs and the VMs. To guard the privacy
and integrity of the guest VMs, HYPERCOFFER introduces a VM-Shim mechanism in
between a guest VM and the hypervisor using memory encryption and integrity
checking. With a drop-in memory controller, MGUARD monitors the memory traffic to
prevent any illegal modifications of the hypervisor code.

—Improving hypervisor code: Another solution is to improve the hypervisor code. For-
mal methods and type verification have been applied to prove the absence of certain
vulnerabilities as shown in SEL4 [Klein et al. 2009] and VERVE [Yang and Hawblitzel
2010]. In addition, as it is challenging to eliminate the software vulnerabilities in
hypervisor code, HYPERSAFE [Wang and Jiang 2010] instruments the hypervisor code
and then runtime verifies its integrity. Recently, XMHF [Vasudevan et al. 2013] pro-
poses an extensible and modular hypervisor framework that can verify the hypervisor
memory integrity and ensure that the hypervisor memory is not modified by software
running at a lower privilege level.

—Deprivileging the hypervisors: The third solution is to minimize the trusted com-
puting base (TCB) of the hypervisor. NOVA [Steinberg and Kauer 2010] implements
a thin bare metal hypervisor that moves the virtualization support to user level,
resulting in at least one order of magnitude smaller TCB size than that of existing
systems. NOHYPE [Keller et al. 2010; Szefer et al. 2011] eliminates the hypervisor
layer by strictly partitioning the hardware resources and rewriting the guest OS
kernel. HYPERLOCK [Wang et al. 2012] creates a separate address space to confine
the hypervisor execution. DEHYPE [Wu et al. 2013] directly deprivileges most of the
hypervisor code without any cooperation from the guest OS kernel.

—Paraverification: Another solution, related to the concept of paravirtualization, con-
siders verification even in the face of a potentially malicious or compromised OS.
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This solution requires slight modifications to the OS, as it must be designed to report
its activities to the hypervisor. Even though the OS cannot be trusted, if it is forced
to report on its own behavior, the hypervisor may check for inconsistencies. Work
still needs to be done in this area to determine the potential of this approach [Jain
et al. 2014].

7.2. Providing High-Fidelity Hypervisors

Similar to the “cat and mouse” games of in-VM attacks and in-VM defenses, by detect-
ing the presence of a hypervisor’s execution, attackers can change their behaviors so
as to evade the out-of-VM monitor. For instance, by performing timing analysis of in-
struction execution, an emulation hypervisor can be easily detected (because of its slow
speed) [Garfinkel and Rosenblum 2003; Jiang et al. 2007]. Additionally, by observing
unusual changes to memory and CPU register values, malware can detect the presence
of certain hypervisors [Dinaburg et al. 2008].

To combat such monitoring-aware attacks, one viable approach is to develop efficient
detection techniques (e.g., behavior differencing [Balzarotti et al. 2010]) or stealthily
fight against malware (e.g., Vasudevan and Yerraballi [2006]), whereas the other di-
rection is to provide high-fidelity hypervisors. Ether [Dinaburg et al. 2008] has made a
first step in removing side effects that are unconditionally detectable by malware, re-
sulting in a highly transparent monitoring system. POKEEMU [Martignoni et al. 2012]
leverages path lifting and symbolic execution to cross validate the implementation
of emulation hypervisors, thereby improving their fidelity. TXINTRO [Liu et al. 2014]
uses the hardware transactional memory (HTM) to actively monitor updates to critical
kernel data structures. With the HTM, it can achieve concurrent, timely, and consis-
tent introspection of guest VMs. Despite the progress being made, tremendous efforts
are still required to reach the stage of having a high-fidelity and highly transparent
hypervisor.

7.3. Complete Memory Monitoring

Although a hypervisor can access all of the physical memory of a guest OS, the memory
it observes unfortunately is incomplete. Specifically, if a certain page is not used and
the OS is starving for memory, it usually swaps out the pages from physical memory to
disk, resulting in pages that are invisible to the hypervisor. Whereas the Linux kernel
does not swap out kernel memory, the Windows kernel does. To have a complete view
of the entire guest OS including both the kernel and its running applications, we have
to address swapped-out memory issues.

Although guest OS–assisted approaches (e.g., GDXJ [Gu et al. 2011], SLCL [Sharif
et al. 2009], LARES [Payne et al. 2008]) can solve this problem by injecting an agent
to access the virtual addresses (they will be automatically swapped back by the guest
OS), we are not aware of any pure out-of-VM solutions that have solved this problem.
Intuitively, it requires the nontrivial effort of traversing the guest OS page swapping
data structures as well as additional progress from disk introspection (to be discussed
in Section 7.4). It would not be a surprise if there were more research efforts in this
direction in the future.

7.4. Complete Disk Monitoring

Interestingly, to our knowledge, all of the current out-of-VM monitors primarily focus
on memory, and except for XENACCESS [Payne et al. 2007], which provides a library to
access VM disk images, and VMWATCHER [Jiang et al. 2007], which also examines disk
files, little light has been shed on accessing VM disk data, including swapped memory.
However, disk data does contain much valuable information about the state of an OS,
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considering that nearly all in-VM antivirus software today actually scans both disk
and memory to find viruses.

One may argue that to introspect the disk data of a guest OS is trivial, as we can
directly mount it to a second computer and use a native disk scanning tool to analyze
its state. Unfortunately, this only works if the disk has a known file system, as shown in
XENACCESS [Payne et al. 2007] and VMWATCHER [Jiang et al. 2007], and if the files have
not been encrypted. If the guest OS uses a private unknown file system, or the files
have been encrypted by the underlying file systems such as with full disk encryption,
which tends to be a common practice for publicly outsourced VMs in today’s cloud, this
introduces significant challenges, and consequently more research efforts are needed
to address this problem.

7.5. Comparable Performance Metrics

Unfortunately, in our study, we found that many of the current solutions for out-of-VM
introspection have performance evaluations that are not comparable to other solutions.
Usually, a solution determines its performance overhead using various calculations,
benchmarks, or common tasks, but no standard set of tests are used. In addition,
unless identical hardware and underlying software (e.g., the hypervisor or OS) are
used, comparing results for the same test is less useful. In addition to time overhead,
it is also important to be able to compare code size to determine how much additional
attack surface a solution adds, and not all works give this information. Therefore, it
may be useful for future work to create some form of standard testing metrics that can
allow researchers to directly compare solutions.

7.6. Beyond Read-Only Introspection

Nearly all past research in out-of-VM monitoring has been read only, mostly avoiding
making changes to the guest OS. This is reasonable because unless a VMM knows
exactly which guest addresses can be safely modified and when it is safe to write to
them, it runs the risk of disrupting kernel state or even crashing the kernel.

Due to the substantial advances in bridging the semantic gap, recent implementa-
tions have nearly complete semantic information about the guest OS, and thus we have
the opportunity to go beyond traditional read-only introspection. Considering the power
of the hypervisor layer, it is possible to make more advanced guest OS modifications
than in-VM security systems can. As demonstrated by EXTERIOR [Fu and Lin 2013b], it
is possible to perform operations such as configuring kernel parameters, changing the
IP routing table, or even killing malicious processes.

The most appealing aspect of writable VMI is its ability to immediately respond
to and prevent attacks without any cooperation from the guest OS or guest OS ap-
plications. It does not require root privileges from the guest OS to perform root-level
operations, such as kill-ing a rootkit-created hidden process or running rmmod against
a hidden malicious kernel module. Considering that there are many read-only VMI
implementations (e.g., Dolan-Gavitt et al. [2011a], Fu and Lin [2012], Garfinkel and
Rosenblum [2003], Jiang et al. [2007], and Jones et al. [2008]), it should be possible to
merge writable VMI seamlessly with them. Given the incentives of writable VMI and
advances in bridging the semantic gap, we expect that there will be more research in
this direction.

7.7. Beyond the Guest OS Kernel and Traditional Platform

Currently, the majority of out-of-VM monitors are interested in the behavior of the
guest OS kernel, which is just one layer above the monitor. As a progression of this
concept, a natural question is why not monitor two layers up to observe application-
level behavior running inside the guest OS? In fact, this certainly is possible. A recent
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work, TZB [Dolan-Gavitt et al. 2013], has demonstrated that by identifying the hook
points of a Web browser through highly automated program analysis, we are able
to observe Web browser behavior at the hypervisor layer through active monitoring
(e.g., Payne et al. [2008]). We believe that there will be more future efforts pushing
forward on the monitoring of guest OS applications, such as Web browsers.

In addition, whereas current out-of-VM monitoring primarily focuses on the tradi-
tional platform, there is a pressing need on mobile platforms. One earlier attempt
was DROIDSCOPE [Yan and Yin 2012], which monitors both the Android kernel and
the apps running in the Dalvik VM. Given more mobile devices with virtualization
support, and more stealthy malware fighting into mobile OS kernels [Zhou and Jiang
2012], it will be no surprise that more out-of-VM monitors will be developed to in-
trospect mobile devices. For instance, a recent effort, TZ-RKP [Azab et al. 2014], has
demonstrated the use of hypervisors to host kernel protection tools for the Android
platform.

8. RELATED WORK

Recently, there have been several efforts focusing on systemizing the knowledge of VMI,
especially from the forensics and secure cloud computing perspective. In particular,
Kuhn and Taylor [2011] reviewed introspection for the specific purpose of forensics.
They also discussed the various ways in which VMI is designed and implemented,
and gave an overview of the applications of VMI rather than different implementation
techniques.

Denz and Taylor [2013] summarized introspection from the perspective of cloud
security. They focused first on the threat model for VMs in the cloud, including current
detection and prevention techniques. They then discussed secure hypervisors, various
attempts at hardening hypervisors, and cloud resilience. They ended with an attempt
to make a comparison of attack surface size and performance overhead, but they could
only compare code size for open source systems, and performance overhead data was
missing for some systems.

A similar work to ours is Jain et al. [2014], which also focused on the semantic gap
problem in VMI. However, their paper focused on trust, security concerns, and attacks,
whereas our work performs a more systematic study, classification, and summary of
existing approaches, as well as an overview of potential applications and deployment
strategies, which we believe will be useful for researchers attempting to contribute to
the field.

9. CONCLUSION

Out-of-VM monitoring has been an appealing alternative to in-VM monitoring since
the first day it emerged. Over the past decade, a significant amount of research has
been carried out to extend the security applications of out-of-VM monitors and make
them more practical and efficient. In this article, we systematized the knowledge in
the domain of out-of-VM monitoring by examining and classifying the different ap-
proaches that have been proposed to overcome the semantic gap and develop various
security applications. Specifically, we reviewed how the existing approaches bridge the
semantic gap while addressing different constraints such as flexibility, coverage, prac-
ticality, and automation; how they have developed different monitoring systems; and
how the monitoring systems have been applied and deployed. For the future of out-of-
VM monitoring, we believe that there are several interesting avenues to explore, such
as protecting the hypervisor itself, having complete memory and disk monitoring, and
developing more introspection capabilities including writable VMI for both kernel-
and user-level programs, as well as expanding the out-of-VM monitors for mobile
platforms.
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