
2015 COINS Summer School Special Topics on VMI

Hands-on Labs
Hands-on Labs of Memory Analysis August 25th, 2015

1 Lab Overview

The goal of this project is to get the hands on experience on virtual machine introspection — an-
alyzing memory dump and reconstruct guest abstraction. There will be two tasks: one is to use
crash tool to introspect a Linux kernel memory dump, and the other is to use volatility to
inspect a Windows memory snapshot. This lab requires a virtual machine installed in your environ-
ment. Please first download the VM that has installed everything you need for this lab at http://
www.utdallas.edu/~zhiqiang.lin/file/mem-analysis-vm.tar.gz. Note that
you can execute the VM by using VMware Player (which is free), or Virtual-box (which is open
source).

2 Linux memory introspection w/ Red-Hat crash utility

Red-hat crash1 utility is a tool that allows you to analyze the kernel dumps or physical memory
snapshots. We have captured the memory snapshot of a Linux kernel memory and installed the
crash tool in the VM. (Note that this crash tool is a modified version we modified in our research).
Please first run the help command to understand how to run crash tool as shown below:

root@debian:~/crash# ./run-crash.sh

crash 4.1.2
Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Red Hat, Inc.
Copyright (C) 2004, 2005, 2006 IBM Corporation
Copyright (C) 1999-2006 Hewlett-Packard Co
Copyright (C) 2005, 2006 Fujitsu Limited
Copyright (C) 2006, 2007 VA Linux Systems Japan K.K.
Copyright (C) 2005 NEC Corporation
Copyright (C) 1999, 2002, 2007 Silicon Graphics, Inc.
Copyright (C) 1999, 2000, 2001, 2002 Mission Critical Linux, Inc.
This program is free software, covered by the GNU General Public License,
and you are welcome to change it and/or distribute copies of it under
certain conditions. Enter "help copying" to see the conditions.
This program has absolutely no warranty. Enter "help warranty" for details.

GNU gdb 6.1
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i686-pc-linux-gnu"...

crash: cannot set context for pid: 8257
KERNEL: ./vmlinux-2.6.18sa

1http://people.redhat.com/anderson/crash_whitepaper/

Hands-on Labs-1

http://www.utdallas.edu/~zhiqiang.lin/file/mem-analysis-vm.tar.gz
http://www.utdallas.edu/~zhiqiang.lin/file/mem-analysis-vm.tar.gz
http://people.redhat.com/anderson/crash_whitepaper/

DUMPFILE: /tmp/crash/mem
CPUS: 1
DATE: Wed Jan 27 14:19:01 2010

UPTIME: 2 days, 02:47:14
LOAD AVERAGE: 0.22, 0.07, 0.02

TASKS: 92
NODENAME: hope
RELEASE: 2.6.18sa
VERSION: #1 SMP Wed Jan 6 00:41:44 EST 2010
MACHINE: i686 (2127 Mhz)
MEMORY: 255.9 MB

PID: 0
COMMAND: "swapper"

TASK: c035dc00 [THREAD_INFO: c0426000]
CPU: 0

STATE: TASK_RUNNING (ACTIVE)

crash> help

* files mod runq union
alias foreach mount search vm
ascii fuser net set vtop
bt gdb p sig waitq
btop help ps struct whatis
dev irq pte swap wr
dis kmem ptob sym q
eval list ptov sys
exit log rd task
extend mach repeat timer

crash version: 4.1.2 gdb version: 6.1
For help on any command above, enter "help <command>".
For help on input options, enter "help input".
For help on output options, enter "help output".

CRSEOF
crash>

You can observe that crash tool actually integrates with gdb, and then you can use many of the
gdb command to examine the memory as you wish. Some useful tools you might want to try
include ps that lists the running process in the snapshot, task that shows the current process’
task_struct, foreach that can iterate certain particular type of data structure and show the
field of your interest.

crash> task
PID: 0 TASK: c035dc00 CPU: 0 COMMAND: "swapper"
struct task_struct {

state = 0,
thread_info = 0xc0426000,
usage = {

counter = 2
},
flags = 8192,
ptrace = 0,
lock_depth = -1,

...

crash> foreach task -R pid
PID: 0 TASK: c035dc00 CPU: 0 COMMAND: "swapper"

pid = 0,

Hands-on Labs-2

PID: 0 TASK: c035dc00 CPU: 0 COMMAND: "swapper"
pid = 0,

PID: 1 TASK: c12f1630 CPU: 0 COMMAND: "init"
pid = 1,

PID: 2 TASK: c12f10b0 CPU: 0 COMMAND: "migration/0"
pid = 2,

PID: 3 TASK: c12f0b30 CPU: 0 COMMAND: "ksoftirqd/0"
pid = 3,

...

crash> foreach bt
PID: 0 TASK: c035dc00 CPU: 0 COMMAND: "swapper"
(active)

PID: 1 TASK: c12f1630 CPU: 0 COMMAND: "init"
#0 [c12e1b00] schedule at c02fc6cb
#1 [c12e1b64] schedule_timeout at c02fcefb
#2 [c12e1b94] do_select at c01782c5
#3 [c12e1e38] core_sys_select at c01785ff
#4 [c12e1f78] sys_select at c0178bed
#5 [c12e1fb8] sysenter_entry at c0103dc6

EAX: 0000008e EBX: 0000000b ECX: bfe65710 EDX: 00000000
DS: 007b ESI: 00000000 ES: 007b EDI: bfe65840
SS: 007b ESP: bfe656d0 EBP: bfe659d8
CS: 0073 EIP: b7fd6410 ERR: 0000008e EFLAGS: 00000246

PID: 2 TASK: c12f10b0 CPU: 0 COMMAND: "migration/0"
#0 [c12e4f50] schedule at c02fc6cb
#1 [c12e4fb4] migration_thread at c011dc55
#2 [c12e4fd0] kthread at c0131f3d
#3 [c12e4fe8] kernel_thread_helper at c0102003

...

crash> task_struct -o
struct task_struct {

[0] volatile long int state;
[4] struct thread_info *thread_info;
[8] atomic_t usage;
[12] long unsigned int flags;
[16] long unsigned int ptrace;
[20] int lock_depth;
[24] int load_weight;
[28] int prio;
[32] int static_prio;
[36] int normal_prio;
[40] struct list_head run_list;

Exercises Please first try to be familiar with crash tool, and then use this tool to answer the
following questions.

Q (1) (Processes). How many processes in total in this memory snapshot (when you run ps com-
mand)? How many vi processes (you can execute ps|grep vi|wc to report this)? How
many of them share the same CR3 (page global directory)? Do those kernel threads (e.g.,
migration/0, ksoftirqd/0, kpsmoused) have the value in page global directory

Hands-on Labs-3

(i.e., CR3)? (Hint: you could traverse CR3 from task_struct − > mm − > pgd)

Q (2) (Files). What are the files opened by syslogd process? (Hint: you could run foreach
files to see the openning files by all the process). What are the processes that open the
files in /etc directory (Hint: you can execute foreach files -R /etc to answer this
question).

Q (3) (Network Connection).Which process has the open sockets? (foreach net). What are
their socket types? (Please look at field FAMILY:TYPE).

Q (4) (Kernel Objects).Kernel objects are usually allocated in a pool by certain allocator (e.g.,
slab or slub allocator). How many task_struct get allocated in the slab allocator in the
given memory snapshot? (Hint: kmem -s |grep task_struct may help you answer
this question). What about mm_struct?

Q (5) (Devices). How many devices are connected this computer when taking the snapshot? (Hint:
dev command will help you). How many of them are character device (with type CHRDEV),
and how many of them are block device (with type BLKDEV)?

Q (6) (Virtual Memory). For init process (with pid 1), how many virtual memory area are not
actually mapped in the memory? (Hint: look at the result from foreach vm -R will help
you answer this question). By looking at the virtual memory mapping of the vi processes,
what you learn? (e.g., how the memory is layed out, and where is the library space) Below is
the virtual memory mapping for syslogd process. There are some gaps between the library
code, what they are? (e.g., Are they data sections of these binary code)?

PID: 1231 TASK: cf6ef810 CPU: 0 COMMAND: "syslogd"
MM PGD RSS TOTAL_VM

cf5e2c60 c1379000 704k 1788k
VMA START END FLAGS FILE

c1307374 45388000 453a1000 875 /lib/ld-2.5.so
cf0bd95c 453a1000 453a2000 100871 /lib/ld-2.5.so
ce92b8b4 453a2000 453a3000 100873 /lib/ld-2.5.so
cf0bd128 80000000 80008000 1875 /sbin/syslogd
cf64a614 80008000 80009000 101873 /sbin/syslogd
cf7e1c50 80009000 8002a000 100073
c1307a04 b7dd3000 b7de2000 75 /lib/libresolv-2.5.so
cf0bd668 b7de2000 b7de3000 100071 /lib/libresolv-2.5.so
cf7b62cc b7de3000 b7de4000 100073 /lib/libresolv-2.5.so
c1307da0 b7de4000 b7de6000 100073
cf80b668 b7de6000 b7dea000 75 /lib/libnss_dns-2.5.so
cf0bd2cc b7dea000 b7deb000 100071 /lib/libnss_dns-2.5.so
c1330f98 b7deb000 b7dec000 100073 /lib/libnss_dns-2.5.so
cf7b6224 b7dfa000 b7dfb000 100073
cf64a95c b7dfb000 b7f32000 75 /lib/libc-2.5.so
c13ac614 b7f32000 b7f34000 100071 /lib/libc-2.5.so
cf0bda58 b7f34000 b7f35000 100073 /lib/libc-2.5.so
cf80bb00 b7f35000 b7f38000 100073
cf0bd9b0 b7f3a000 b7f43000 75 /lib/libnss_files-2.5.so
c139ab00 b7f43000 b7f44000 100071 /lib/libnss_files-2.5.so
c131c4c4 b7f44000 b7f45000 100073 /lib/libnss_files-2.5.so
ced43278 b7f45000 b7f47000 100073
cf7e15c0 b7f47000 b7f48000 75
ce92b710 bf914000 bf929000 100173

Hands-on Labs-4

3 Windows memory forensics w/ Volatility

Often times, one of the first steps for diagnosing a potential intrusion incident is backing up a RAM
image (since RAM often contains important traces, such as information on running processes or
active network connections), and then analyze the volatile memory. Volatility2 is such an analysis
framework.

In this lab, you will be asked to use volatility to analyze a memory dump that contains hid-
den malicious process. Note that volatility is open source, and it has been set up in the analy-
sis VM (http://www.utdallas.edu/~zhiqiang.lin/file/mem-analysis-vm.
tar.gz), as shown below. The to be analyzed memory dump (i.e., hidden_process.img) is
also installed in the VM.

root@debian:~/volatility-2.4# vol.py -h
Volatility Foundation Volatility Framework 2.4
Usage: Volatility - A memory forensics analysis platform.

Options:
-h, --help list all available options and their default values.

Default values may be set in the configuration file
(/etc/volatilityrc)

--conf-file=/root/.volatilityrc
User based configuration file

-d, --debug Debug volatility
--plugins=PLUGINS Additional plugin directories to use (colon separated)
--info Print information about all registered objects
--cache-directory=/root/.cache/volatility

Directory where cache files are stored
--cache Use caching
--tz=TZ Sets the timezone for displaying timestamps
-f FILENAME, --filename=FILENAME

Filename to use when opening an image
--profile=WinXPSP2x86

Name of the profile to load
-l LOCATION, --location=LOCATION

A URN location from which to load an address space
-w, --write Enable write support
--dtb=DTB DTB Address
--shift=SHIFT Mac KASLR shift address
--output=text Output in this format (format support is module

specific)
--output-file=OUTPUT_FILE

write output in this file
-v, --verbose Verbose information
-g KDBG, --kdbg=KDBG Specify a specific KDBG virtual address
-k KPCR, --kpcr=KPCR Specify a specific KPCR address

Supported Plugin Commands:

apihooks Detect API hooks in process and kernel memory
atoms Print session and window station atom tables
atomscan Pool scanner for atom tables

...

root@debian:~/windows# ll
total 262408
-rw-r--r-- 1 root root 268435456 Jul 6 2010 hidden_process.img
-rw-r--r-- 1 root root 153 Aug 31 13:07 README

2http://www.volatilityfoundation.org/#!24/c12wa

Hands-on Labs-5

http://www.utdallas.edu/~zhiqiang.lin/file/mem-analysis-vm.tar.gz
http://www.utdallas.edu/~zhiqiang.lin/file/mem-analysis-vm.tar.gz

There are many plugins for either Windows or Linux memory forensics inside the volatility. In
this task, you are asked to use some of them to find the hidden process. In particular, there are
three plugins: pslist, psscan, and psxview, that would be of your special interest. pslist walks
the operating system’s list of processes, psscan does a brute force scan for process objects, and
psxview finds the hidden processes. Any process found by the scan which isn’t found by the walk
is unusual, most likely hidden processes. Let’s give a try on these plugins.

root@debian:~/windows# vol.py pslist -f hidden_process.img
Volatility Foundation Volatility Framework 2.4
Offset(V) Name PID PPID Thds Hnds Sess Wow64 Start
---------- -------------------- ------ ------ ------ -------- ------ ------ ------------------
0x819cc830 System 4 0 51 254 ------ 0
0x817e4670 smss.exe 360 4 3 19 ------ 0 2008-11-26 07:38:11
0x8181bd78 csrss.exe 596 360 10 322 0 0 2008-11-26 07:38:13
0x8182b100 winlogon.exe 620 360 16 503 0 0 2008-11-26 07:38:14
0x8183ba78 services.exe 672 620 15 245 0 0 2008-11-26 07:38:15
...

root@debian:~/windows# vol.py psscan -f hidden_process.img
Volatility Foundation Volatility Framework 2.4
Offset(P) Name PID PPID PDB Time created
------------------ ---------------- ------ ------ ---------- ------------------------------
0x000000000181b748 alg.exe 992 660 0x08140260 2008-11-15 23:43:25
0x0000000001843b28 wuauclt.exe 1372 1064 0x08140180 2008-11-26 07:39:38
0x000000000184e3a8 wscntfy.exe 560 1064 0x081402a0 2008-11-26 07:44:57
...
root@debian:~/windows# vol.py psxview -f hidden_process.img
Volatility Foundation Volatility Framework 2.4
Offset(P) Name PID pslist psscan thrdproc pspcid csrss session deskthrd
---------- -------------------- ------ ------ ------ -------- ------ ----- ------- --------
0x01a2b100 winlogon.exe 620 True True True True True True True
0x01a3d360 svchost.exe 932 True True True True True True True
...

Q (1) (pslist). How many processes in total in this memory snapshot (when you run pslist
command)?

Q (2) (psscan). How many processes in total in this memory snapshot (when you run psscan
command)?

Q (3) (psxview). How many of the process give the false result to pslist, and how many of them
for psscan? Please list these processes in greater details.

Q (4) (Robust signature). You may wonder why psxview can even detect the hidden process that
is not show to both pslist and psscan. The reason is psxview uses a robust kernel
object data structure signatures to find out the hidden process. Please identify which process
it is. Some info about this robuster scanner can be found at http://moyix.blogspot.
com/2010/07/plugin-post-robust-process-scanner.html.

Q (5) (Binary extraction). Volatility also provides a procdump plugin to extract the binary code
of a given process, as shown below. How many bytes you observed of the extracted binary
file?

root@debian:~/windows# vol.py -f hidden_process.img procdump -o 0x01a4bc20 --dump-dir=.
Volatility Foundation Volatility Framework 2.4
Process(V) ImageBase Name Result
---------- ---------- -------------------- ------

Hands-on Labs-6

http://moyix.blogspot.com/2010/07/plugin-post-robust-process-scanner.html
http://moyix.blogspot.com/2010/07/plugin-post-robust-process-scanner.html

0x8184bc20 0x00400000 network_listene OK: executable.1696.exe
root@debian:~/windows# ls
executable.1696.exe hidden_process.img README
root@debian:~/windows# file executable.1696.exe
executable.1696.exe: PE32 executable for MS Windows (console) Intel 80386 32-bit

Q (6) (Other Plugins). There are many other plugins that might be of your interest. For instance,
pstree, and deskscan. Please describe which processes have the parent PID 672? Also,
what you found when you execute deskscan plugin?

Hands-on Labs-7

	Lab Overview
	Linux memory introspection w/ Red-Hat crash utility
	Windows memory forensics w/ Volatility

