
End to End Defense against Rootkits

in Cloud Environment

Design- Part 1

Sachin Shetty

Associate Professor
Electrical and Computer Engineering
Director, Cybersecurity Laboratory

Tennessee State University

RootkitDet Overview

– Detection
• Registration procedures indicate legitimate code of guest OSes

• Detection procedures find out suspicious code in the kernel space

– Diagnosis
• Perform static analysis on the code of rootkits to collect

characteristic information

• Categorize by matching to profiles of known rootkits

– Recovery

RootKitDet Overview

RootkitDet: Basic Architecture

RootkitDet

Guest OS

Kernel rootkit

VMM

Registered kernel

and modules

Rootkit profiles

Dector
Analyzer &

Recoverer

Conductor

RootKitDet- Detection

• First step in the RootkitDet system is to detect the kernel-level
rootkits installed into the guest OSes.

• RootkitDet system identifies suspicious code, which is taken as
the code of rootkits, in the kernel space of guest OSes.

• By ”suspicious”, we mean a memory region that is not
supposed to hold any code or a region that holds illegitimate
code.

• To separate the code of rootkits from legitimate code, we
introduce a simple, practical and effective registration
procedure .

RootKitDet- Registration

• Registration procedure allows administrator of a guest OS to
register the kernel and potential LKMs of the guestOS in
advance.

• Registration of the kernel provides enough information to
bridge semantic gap in our system.

• Registration information includes source code configuration
file, system. map as well as the binary file of the kernel.

• The kernel of a guest OS should be registered prior to the
execution of the virtual machine which the guest OS runs on.

RootKitDet: Registration

• Registration of LKMs is critical to separating legitimate code
and the rootkits.

• To register a LKM that is probable to be loaded during the
lifetime of the guest OS, the administrator should provide the
module’s name and object file.

• A module should be registered before it is loaded into the
kernel, even if the guest OS is running.

• We suppose that registration procedure is performed through
a secure channel, which is unknown to the attacker.

RootKitDet: Detection

• To detect suspicious code in the kernel space of a guest OS,
RootkitDet system reconstructs the page directory of the
kernel space of the guest OS, identifies all executable regions
and compares them with expected executable regions which
hold legitimate code.

• Detects whether extra executable regions exist in the kernel
space.
– Extra regions are different from that holds legitimate code

– Detects whether some code resides in unused space of modules.

– Detects malicious modifications to the legitimate code by computing
SHA-1 checksums of the legitimate code

– Any mismatch means that legitimate code is modified by the rootkits.

RootKitDet: Diagnosis

• Diagnosis involves categorizing the detected rootkits and
precisely identify the objects and data structures that are
modified by the rootkit.

• Generate profiles of known typical rootkits in advance.

• RootkitDet system performs static analysis on the code of the
detected rootkit to collect characteristic information, which is
used to categorize the rootkit by matching with the profiles of
known typical rootkits.

RootKitDet: Profile

• Tactic adopted by the rootkit to achieve its intention.

• We describe the tactic by a set of semantic actions, including
external function calls, access to global variables and dynamic
allocated data structures.

• The data structures that we should recover according to its
tactic.

• In general, these data structures are dynamically allocated but
we can find its location tracking down from a global variable
with fixed location.

RootKitDet: Recovery

• Recover the objects and data structures that were modified by
the rootkit.

• Rootkit may make modifications to control data and non-
control data.
– Control data are usually function pointers
– Expected values of control data are already known
– Modifications to non-control data are various and usually there are

no expected values for them.

• Some modifications to non-control data break the links to other
objects or violate some invariant that keeps in uninfected
kernel.

• We can figure out how to recover such modifications in the
kernel’s context.

RootKitDet Components

• RootkitDet comprises several components:
– Registration

– Conductor

– Detector

– Analyzer

– Inspector.

• All components except inspector are independent of the
hypervisor, and run in a different OS running on a virtual
machine or a physical machine

RootKitDet: Inspector

• Inspector is integrated into the hypervisor to provide a
reliable interface to access the kernel space memory and CPU
registers of guest OS.
– Used by detector and analyzer.

• Reading or writing the memory of the guest OSes does not
require stopping the OS because our system accesses
unusually changed memory during detection and recovery
procedures in most of the time.

• Inspector is easily developed in most cloud platforms due to
its simplicity

RootKitDet: Detector

• Detector performs three detection procedures to find out
whether kernel-level rootkits exists in guest OS according to
the commands coming from

• the conductor.

• In detection procedure 1, detector reconstructs the list of
loaded modules and generates the list of executable regions
in the kernel space, then compares them to find out whether
extra executable regions exist besides the

• regions of the kernel code and registered modules.

RootKitDet: Detector

• In detection procedure 2, detector checks whether some code
resides in the unused space of each module.

• In detection procedure 3, detector calculates checksums for
the code of the kernel and modules, and compares them with
original ones, which are provided by the conductor, to check
integrity of the legitimate code in the kernel space.

RootKitDet: Detector

• Detection procedure 1 and 2 might be bypassed because
detector depends on the memory of guest OSes, which might
be under the control of rootkits.

• For instance, a rootkit may tamper with the information of a
module and change the module’s code size to a bigger value,
and put its code right behind the module’s code, pretending
itself as part of the module to escape from detection.

• We leave this problem to the conductor and the conductor
resolves it when generating the original hash values for all of
the modules.

RootKitDet: Conductor

• Conductor is the heart of our system.

• It periodically sends commands to detector to start detection
procedures when the guest OS is running.

• Once rootkits are detected, it receives the detection report
from detector, then raises an alert to the administrator and
activates analyzer.

• Conductor also helps detector during detection procedure 3
by generating original checksums of the loaded modules of
the guest OS as well as descriptions of each module, which
are used to detect smart rootkits that escape from procedure
1 and 2.

RootKitDet: Registration

• Registration component stores information of the guest Oses
provided by the administrator in registration procedure.

• It provides information of the kernel to bridge semantic gap in
the three steps of RootkitDet system.

• Besides, it provides the necessary information of the kernel
and legitimate modules to help RootkitDet system separate
rootkits.

RootKitDet: Analyzer

• Analyzer diagnoses the code of the detected rootkit by
performing static analysis to collect related characteristic
information and attempts to categorize the detected rootkit
heuristically.

• If the analyzer succeeds in categorizing the rootkit by
matching the characteristic information with the profiles of
known rootkits, it can finally perform recovery of the guest
OSes.

• The analyzer performs static analysis instead of dynamic
analysis due to the following reasons.

RootKitDet: Analyzer

• First, dynamic analysis is not applicable in practice due to its
heavy overhead to guest OSes.

• Second, dynamic analysis requires the execution of the code
of rootkits to analyze its behavior while static analysis does
not.

• Finally, the characteristic information collected through static
analysis is enough in most cases although it is sketchy and
rough.

