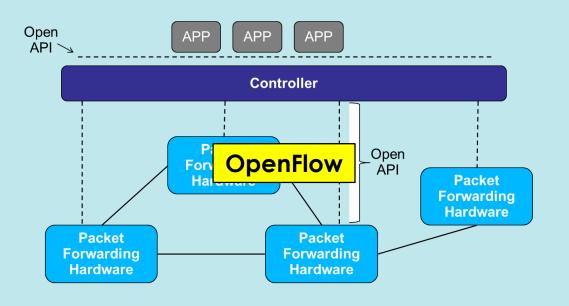

COINS Summer School

Dr. Sandra Scott-Hayward

23 August 2015



What is OpenFlow?

OpenFlow = A protocol to control the forwarding behaviour of Ethernet switches in a Software Defined Network

OpenFlow Controller

OpenFlow Protoco

Embedded OS implements OpenFlow

Table-based (e.g. TCAM/CAM) highspeed forwarding engine

OpenFlow Origin

Clean Slate Program at Stanford

- Early work on SANE circa 2006
- Inspired Ethane circa 2007, which lead to OpenFlow

```
2009 Stanford publishes OF 1.0.0 Specification
```

2009 Nicira Series A funding

2010 Big Switch seed funding

2011 Open Network Foundation is created

2012 Google announces migration to OpenFlow (migration started in 2009)

Open Networking Foundation owns OpenFlow

Flow Table (OpenFlow v1.0)

32768

Header Fields	Counters	Actions	Priority
Ingress Port	Per Flow Counters	Forward (All,	
Ethernet Source Addr	Received Packets	Controller, Local,	
Ethernet Dest Addr	Received Bytes	Table, IN_port, Port#	
Ethernet Type	Duration seconds	Normal, Flood)	
VLAN id	Duration nanoseconds		
VLAN priority		Enqueue	
IP Source Addr		Drop	
IP Dest Addr		Modify-Field	
IP Protocol			
IP ToS			
ICMP type			
ICMP code			

forward Controller

if Eth Type == ARP

Flow Table

Each Flow Table entry has two timers:

idle_timeout seconds of no matching packets after which the flow is removed

zero means never timeout

hard_timeout seconds after which the flow is removed

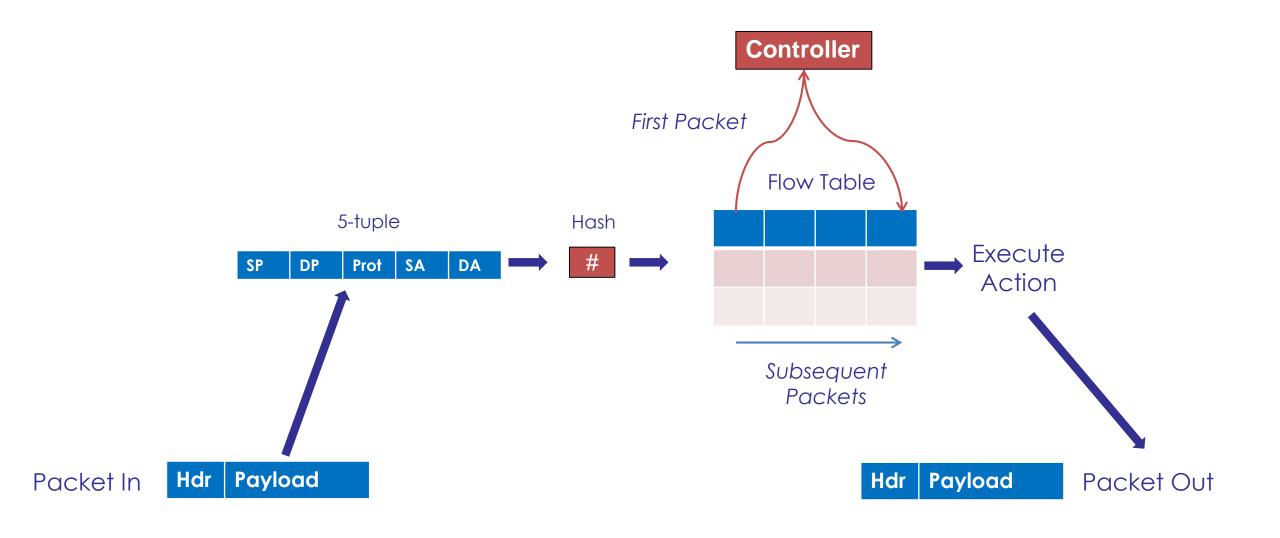
zero means never timeout

If both idle_timeout and hard_timeout are set, then the flow is removed when the first of the two expires.

Proactive vs. Reactive Flows

Populating the Flow Table

Proactive Rules are relatively static, controller places rules in switch before they are


required.

Reactive Rules are dynamic. Packets which have no match are sent to the controller

(packet in). Controller creates appropriate rule and sends packet back to switch

(packet out) for processing.

Implementing OpenFlow

Evolution of OpenFlow

OpenFlow v1.0

Header Fields	Counters	Actions	Priority
			- <i>I</i>

Does packet match flow table entry, if so, perform action.

OpenFlow v1.5

Match Fields	Priority	Counters	Instructions	Timeouts	Cookie	Flags			
Metadata	Pad	cket	Action Set						
Group ID	Туре		Counters	Action B	uckets				

Does packet match flow table entry, if so, look at instructions ...

Actions vs. Instructions

OpenFlow v1.1

- Flow entries contain instructions
- Instructions may be immediate action(s), or
- Instructions may set actions in the action set
- Instructions can also change pipeline processing:
 - Goto table X
 - Goto group table entry x

Statistics/Counters

Counters maintained for each:

Flow Table Required: Reference Count (active entries)

Flow Entry Required: Duration (seconds)

Port Required: Received Packets, Transmitted Packets, Duration (seconds)

• Queue Required: Transmit Packets, Duration (seconds)

Group Required: Duration (seconds)

Group Bucket Optional

Meter Required: Duration (seconds)

Meter Band Optional

Evolution of OpenFlow

OpenFlow v1.3 (Long Term Maintained)

New table "Meter Table" – supporting Quality of Service

New instruction: Meter meter_id

Meter Identifier	Meter Bands	Counters
32 bit integer used to identify the meter	List of meter bands; each band specifies rate and behaviour	

Evolution of OpenFlow

OpenFlow Version	Match fields	Statistics	# Matches		# Instructions		# Actions		# Ports	
Open low retaion	Water reigs	Statistics	Req	Opt	Req	Opt	Req	Opt	Req	Opt
	Ingress Port	Per table statistics		2	1	0	2	11	6	2
v 1.0	Ethernet: src, dst, type, VLAN	Per flow statistics	18							
V 1.0	IPv4: src, dst, proto, ToS	Per port statistics	10							
	TCP/UDP: src port, dst port	Per queue statistics								
v 1.1	Metadata, SCTP, VLAN tagging	Group statistics	23	2	0	0	3	28	5	3
V 1.1	MPLS: label, traffic class	Action bucket statistics	23							
v 1.2	OpenFlow Extensible Match (OXM)		14	14 18	2	3	2	49	5	3
V 1.2	IPv6: src, dst, flow label, ICMPv6		14							
v 1.3	PBB, IPv6 Extension Headers	Per-flow meter	14	26	2	4	2	56	5	3
V 1.3	PBB, IPVO Extension ricagers	Per-flow meter band	14							
v 1.4		_	14	4 27	2	4	2	57	5	3
V 1.4		Optical port properties	14						,	3

Multiple Tables

Controller Role Change

Role Status, Error Codes

D. Kreutz et al., 'Software-Defined Networking: A Comprehensive Survey', proceedings of the IEEE 103, no. 1 (2015): 14-76

	v1.5	-	Extensible Flow Entry	14	30	2	5	2	59	5	3
--	------	---	-----------------------	----	----	---	---	---	----	---	---

Egress Ports, Various Security Recommendations

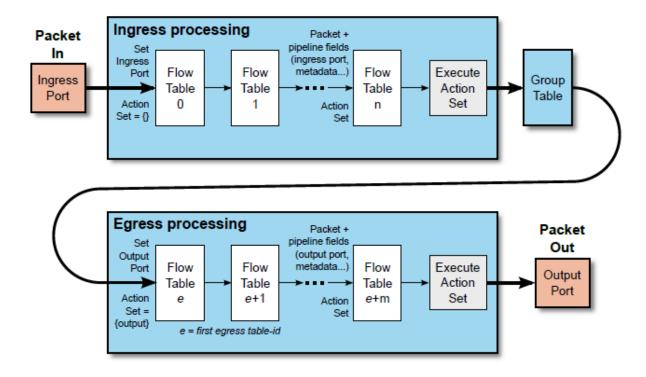
Securing the OpenFlow Protocol

ONF Security WG OpenFlow Switch Specification Analysis:

Recommendations to Extensibility WG – Updates to OpenFlow Switch Specification v1.3.5

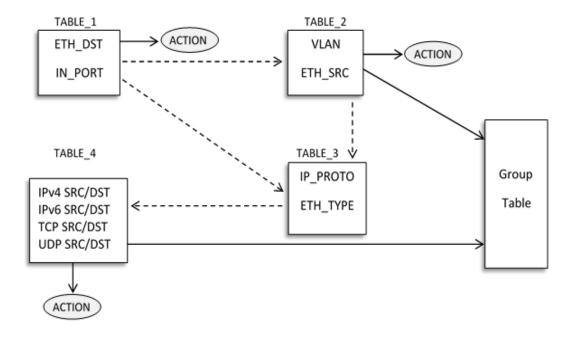
- Specify that a secure version of TLS is recommended (EXT-525)
- Clarify certificate configuration of the switch (EXT-304)
- Specify that malformed packet refer to those in the datapath (EXT-528)
- Specify how to deal with malformed OpenFlow messages (EXT-528)
- Specify that counters must use the full bit range (EXT-529)

Connection Setup – TCP vs. TLS

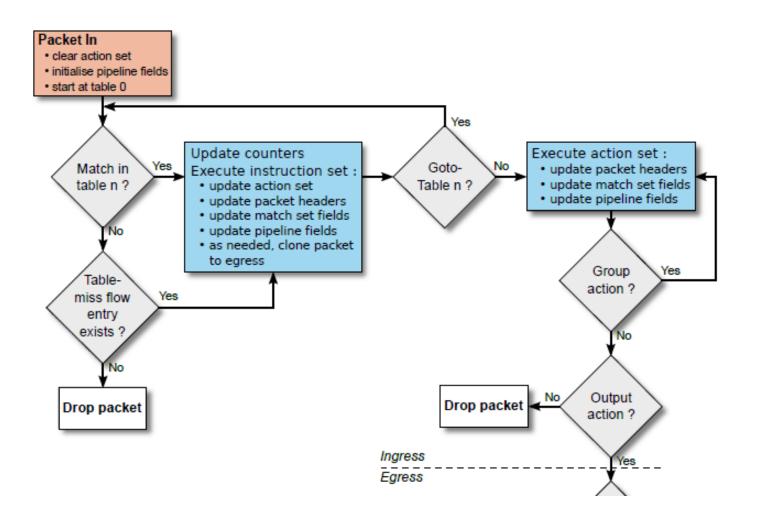

Main Connection: TLS or TCP

Auxiliary Connection: TLS, DTLS, TCP, UDP

On reliable transport (tls/tcp), use full OF protocol


On unreliable transport (dtls/udp), use only subset of OF protocol

e.g. ovs-vsctl set-controller <switch> protocol:name-or-address:port ovs-vsctl set-controller dp1 ssl:127.0.0.1:6653


Open Networking Foundation, 'OpenFlow Switch Specification Version 1.5.1', www.opennetworking.org

Pipeline Processing

L2-L3-ACL Pipeline

Packet Flow through OF Switch

FlowSim

FlowSim – web-based OpenFlow data plane simulator designed to teach OF data plane

abstractions

https://flowsim.flowgrammable.org/

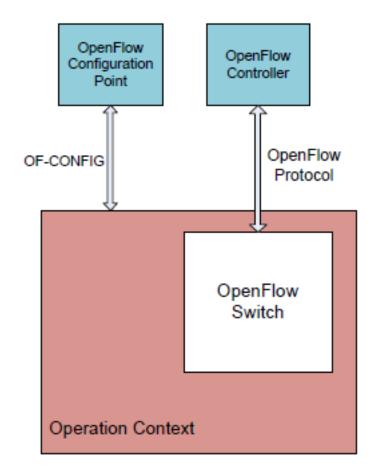
Example: IPv4 Packet Pipeline:

TO Match: In_Port, Eth_dst; Action: GoTo T2

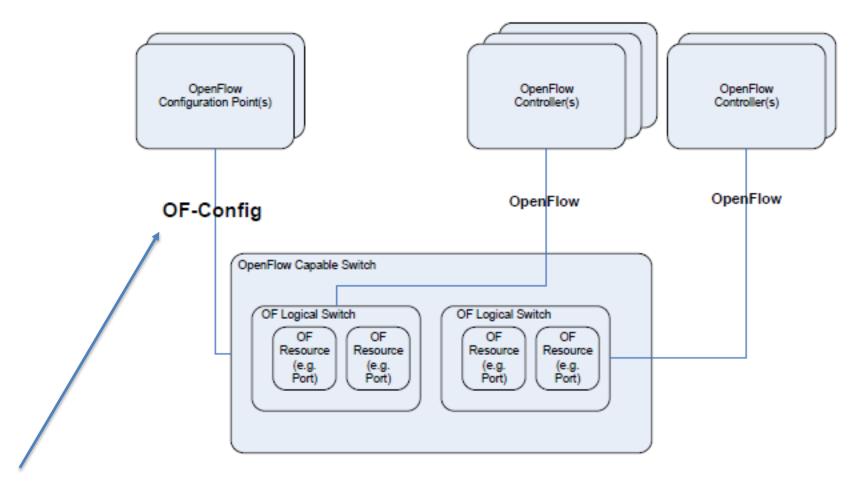
T2 Match: Eth_type, IPv4 Proto; Action: Write and Apply IPv4 Dst, Output Port

VLAN Packet Pipeline:

TO Match: In_Port, Eth_dst; Action: GoTo T1


T1 Match: Eth_Src; Action: GoTo T2

T2 Match: Eth_type; Action: Apply VLAN ID, Set Queue, Set Out Port


OF-Config 1.2

OF-Config 1.2 – OpenFlow Management and Configuration Protocol:

"OF-CONFIG defines an OpenFlow switch as an abstraction called an OpenFlow Logical Switch. The OF-CONFIG protocol enables configuration of essential artifacts of an OpenFlow Logical Switch so that an OpenFlow controller can communicate and control the OpenFlow Logical switch via the OpenFlow protocol."

OF-Config 1.2

OF-CONFIG uses NETCONF protocol as its transport (implies SSH/TLS)

OF-CONFIG 1.2 is focussed on the following functions to configure an OF1.3 logical switch:

- Assignment of one or more OF controllers to OF data planes
- Configuration of queues and ports
- Ability to remotely change some aspects of ports (e.g. up/down)
- Configuration of certificates for secure communication between the OF logical switches and OF controllers
- Discovery of capabilities of an OF logical switch
- Configuration of a set of specific tunnel types such as IP-in-GRE, NV-GRE, VxLAN

Mininet – OpenVSwitch - WireShark

DEMO

End Session 2

DYNAMIC