Design and deployment of secure, robust, and
resilient SDN Controllers

Sandra Scott-Hayward
Centre for Secure Information Technology (CSIT), Queen’s University Belfast, Belfast, BT3 9DT, N. Ireland
Email: s.scott-hayward@qub.ac.uk

Abstract—The scale of the Software-Defined Network (SDN)
Controller design problem has become apparent with the ex-
pansion of SDN deployments. Initial SDN deployments were
small-scale, single controller environments for research and use-
case testing. Today, enterprise deployments requiring multiple
controllers are gathering momentum e.g. Google’s backbone
network, Microsoft’s public cloud, and NTT’s edge gateway.
Third-party applications are also becoming available e.g. HP SDN
App Store. The increase in components and interfaces for the
evolved SDN implementation increases the security challenges of
the SDN controller design. In this work, the requirements of a
secure, robust, and resilient SDN controller are identified, state-
of-the-art open-source SDN controllers are analyzed with respect
to the security of their design, and recommendations for security
improvements are provided. This contribution highlights the gap
between the potential security solutions for SDN controllers and
the actual security level of current controller designs.

I. INTRODUCTION

The controller or network operating system (NOS) is at the
heart of the Software-Defined Network (SDN). A multitude
of SDN controllers have been designed since the development
of the OpenFlow protocol [1] for communication between the
data and control planes of the SDN. A detailed classification
of SDN controllers is provided in [2].

Early controller design focused on building support for the
OpenFlow (OF) Application Programming Interface (API) i.e.
as an OF driver in order to provide a set of basic network
services such as link discovery, topology generation and flow
entry pushing. In order to meet the performance of traditional
(non-SDN) networks, the focus then turned to performance
and scalability. Performance enhancements aimed to achieve
a high throughput and low latency in terms of control event
processing. Scalability refers to the controller’s ability to
support an increasing number of switches/hosts.

From a security and reliability perspective, the initial con-
cern was the centralized controller as a single point of failure
in the network [3]. If all the control decisions take place in
one device and an attacker hi-jacked that device, it would take
control of the network. Similarly, the centralized controller
becomes vulnerable to Denial-of-Service (DoS) attacks [3].

With the evolution of SDN, the vulnerability of the cen-
tralized controller is no longer the key security issue. Some
issues of concern are the integration of 3rd party applications
with the SDN control framework, policy conflict resolution
between multiple applications in the SDN, and the complexity

978-1-4799-7899-1/15/$31.00 (©2015 IEEE

of multiple controller deployments. There is no single SDN
controller that currently delivers security, robustness, and
resilience in parallel. By secure, robust, and resilient (referred
to here as ‘security’), it is meant that the controller is designed
to reduce the risk of intrusion/attack at the network control
layer, is able to withstand errors in control layer logic, and
is able to recover quickly from disruption and maintain an
acceptable level of service in the face of faults.

Five controllers have been selected for security analysis;
three of the latest, advanced open-source SDN controllers
(OpenDaylight (ODL) [4], Open Network Operating System
(ONOS) [5], and Ryu [6]), and two research-driven, security-
focussed controllers (SE-Floodlight [7] and ROSEMARY [8]).

The paper is organized as follows: Section II introduces
related work. In Section III, the selected controllers are pre-
sented. In Sections IV, V, and VI, Secure Controller Design,
Secure Controller Interfaces, and Controller Security Services
are discussed. Recommendations for future security enhance-
ments in SDN controller design are provided in Section VII.
Section VIII concludes the paper.

II. RELATED WORK

Several comparative analyses of SDN/OF controllers have
been performed. In [11], the authors presented a study of SDN
OF controller performance. However, the controllers (NOX-
MT, Beacon and Maestro) have since been superseded by
other controllers. In [12], several open-source SDN controllers
were compared in terms of performance, scalability, reliability,
and security. The security analysis is limited to consideration
of how the controllers in the study respond to malformed
OF messages. A feature-based comparison of controllers was
presented in [13]. Ten selection criteria were used to select
the best controller based on an adapted Analytic Hierarchy
Process (AHP). Pairwise prioritization of the criteria as used in
the AHP is subjective. Ryu is selected to be the best controller.

Two of the controllers discussed in this work are designed
for security; ROSEMARY [8] and SE-Floodlight [7]. In ad-
dition to these secure controller designs, individual features
of the secure control layer framework have been studied. In
[14], a means to secure the control channel in software-defined
mobile networks based on Host Identity Protocol (HIP) is
presented. A fault-tolerant controller architecture with a data
store based on a replicated state machine is presented in [15].
With LegoSDN [16], the authors consider the impact of SDN
application failures on the controller reliability. In PermOF

TABLE I
TEST CONTROLLER VERSION DETAILS

‘ Controller Source Version Release Architecture Objective ‘ Security Features
ONOS [5] ON.Lab Avocet 2014 Distributed High-availability, Security-mode ONOS proposed for v2
1.0.0 Scale-out, Performance [9]
OpenDaylight (ODL) [4] OpenDaylight Helium 2014 Distributed Enterprise-Grade Performance, AAA Service,
Project (Karaf 0.2.0) High Availability Foundation of Security Group [10]
ROSEMARY (8] KAIST, - 2014 Centralized Robust, secure, and Process Containment, Resource Usage
SRI International high-performance NOS Monitoring, App Permission Structure
Ryu [6] NTT 3.13 2012 Centralized High quality controller for Secure control layer communication
Multi-Threaded production environments
SE-Floodlight [7] SRI International Beta 2 2013 Centralized Security-enhanced version Security enforcement kernel (AAA)
of Floodlight controller

[17], the authors propose a set of application permissions and
an isolation mechanism to enforce the permissions.

In comparison with [11]-[17], this work considers a unique
set of the most advanced open-source SDN controllers, a broad
set of security issues and the design and deployment features
to overcome these issues.

III. CONTROLLERS AND TEST ENVIRONMENT

The controllers have been selected based on their design.
ONOS and OpenDaylight (ODL) are designed for scale-out
i.e. multiple distributed controller instances. ROSEMARY and
SE-Floodlight have been designed for security, and Ryu is
included based on both security features and extensibility.
Although, ROSEMARY is a conceptual design with no source
code available, it is considered important in this analysis for
the advanced security features introduced in the design.

The security features of the controllers are identified based
on both documentation and verification of code (except ROSE-
MARY). Tests were carried out in a physical SDN with Dell
Precision T3600 workstations running Ubuntu 14.04 LTS. The
controllers are connected to a network of OpenvSwitch (OVS)
v2.3.0 OF switches installed on the Dell workstations with VM
hosts. The controller versions are detailed in Table I.

IV. SECURE CONTROLLER DESIGN

The security attributes identified as necessary for the de-
sign and deployment of a secure, robust, and resilient SDN
controller have been categorized into three groups; Secure
Controller Design, Secure Controller Interfaces (Section V);
and Controller Security Services (Section VI). An overview of
how these attributes are supported by the individual controllers
is provided in Table II.

A. Control Process (Application) Isolation

Control process isolation is defined here as the ability to
separate the application processes running at the controller
in order to provide logical segmentation, to support authen-
tication of individual applications and to apply levels of
authorization dependent on trust. Application isolation should
provide resilience to the controller whereby a failure/error in
one application does not compromise the controller.

Apache Karaf is the OSGi framework used in ONOS and
ODL Helium. This enables applications (as bundles) to be
dynamically loaded/unloaded. However, this does not provide
protection at the level of the control processes that support
the applications and there is currently no OSGi application
security for access permissions on the Karaf features. This is
identified as a future improvement in ONOS and ODL.

The central objective of ROSEMARY is to improve the
resilience of the control plane to buggy and malicious ap-
plications. To achieve this, the authors propose a micro-NOS
architecture. Each OF application is run within an independent
instance of ROSEMARY effectively sandboxing the applica-
tion to protect the control layer from any vulnerability or
malicious operation of the application.

SE-Floodlight uses the northbound API to separate the
application and control processes. Privilege-based OF opera-
tions are enforced with privileges defined by Role and Group
Access Control Lists and credential files for internal java-based
Floodlight modules. Groups define permissible OF operations.

As demonstrated by ROSEMARY and SE-Floodlight, a
sandbox/containerized approach combined with strong au-
thentication and identification services is required to provide
protection to the controller from malicious/buggy applications.

B. Implementation of Policy Conflict Resolution

The problem of policy conflict presents itself when the
controller receives incompatible flow rules from 2 or more ap-
plications. Several solutions to the issue of network policy con-
flict arising from multiple applications in the SDN have been
proposed, as discussed in [3]. However, a concern with these
methods is their scalability for large applications/networks
with regular flow rule additions/updates. In each case, ex-
tensive processing is required in order to detect potential
network state misconfigurations. A potential alternative that
does not sacrifice performance is proposed in [15]. A strongly
consistent data store maintains network state consistency.

Of the 5 controllers analyzed in this work, only ONOS and
SE-Floodlight implement policy conflict resolution. In ONOS,
the application describes its network requirements in the form
of “intents” and ONOS translates these intents with respect
to the network configuration. This is supported by a shared

TABLE 11
SECURITY ATTRIBUTES OF SDN CONTROLLERS

Controller || onos OpenDaylight (ODL) | ROSEMARY | Ryu | SE-Floodlight |
IV. Secure Controller Design

- A. Control Process (Application) Isolation X X v/ (micro-NOS) X v/ (Privilege-Based)

- B. Implementation of Policy Conflict Resolution v/ (Data-Store) X X X v/ (Algorithm)

- C. Multiple Controller Instances - Resilience V' (Clustering) v (Clustering) X X X

- D. Multiple Application Instances - Resilience X X X X X

- E. Secure Storage v v v v v

V. Secure Controller Interfaces

- A. Secure Control Layer Communication X v (D-CPI) X v (D-CPI) v/ (D-CPI, A-CPI)

- B. GUI/REST API Security X v (weak) n/a X X

VI. Controller Security Services

- A. IDS/IPS Integration X v (Defense4All) X v (Snort) v/ (BotHunter, Sec. Actuator)
- B. Authentication and Authorization X v v X v

- C. Resource Monitoring X X v X X

- D. Logging/Security Audit Service v v v v v

data store, similar to [15]. In SE-Floodlight, the SEK uses an
algorithm called Rule-chain Conflict Analysis (RCA) to detect
when a new flow rule conflicts with one or more rules already
present in the switch flow table, as described in [7].

C. Multiple Controller Instances - Resilience

The requirement for multiple controllers in SDN was first
raised as a solution to the issue of the centralized controller.
In order to provide control layer resilience, solutions evolved
from simple controller replication schemes to distributed con-
trol system design. Distributed design introduces issues of
timing, consistency, synchronization, and coordination.

A key feature of ONOS is its distributed architecture to sup-
port scale-out and fault tolerance. Multiple ONOS instances
can be linked to form an ONOS cluster with each instance
the exclusive master of a set of switches. In the case that one
ONOS instance fails, the remaining instances elect a new mas-
ter for each of the affected switches. State management is pro-
vided by RAMCloud datastore and Zookeeper registry. ODL
supports a similar clustering model using Infinispan NoSQL
datastore. For state synchronization, the Cache data structure is
replicated in each cluster node. Neither ROSEMARY nor SE-
Floodlight consider multiple controller instances. With Ryu,
cluster support for distributed deployment is future work.

D. Multiple Application Instances - Resilience

With multiple controller instances, the provision of multiple
application instances must also be considered. For applications
using OSGi for controller communication (e.g. ONOS, ODL),
the application must ensure its own resiliency in the case of
failure of one controller instance in a cluster. The application
is responsible for providing state synchronization between
instances. In contrast, for REST applications, the application-
controller connection is non-persistent such that in the case of
failure of one controller instance in a cluster, a new connection
is simply established on the next transaction. None of the

studied controllers provide a mature solution for handling
network state coordination across multiple app instances.

E. Secure Storage

The controller contains valuable network state information
that must be secured. In a review of the controllers, standard
security practices are applied e.g. default permissions on
log files to allow owner read/write privilege but read-only
to others. Additional measures are applied to the individual
controllers. For example, in ROSEMARY, access to internal
storage modules is controlled so that applications are autho-
rized for certain operations. Data structures have privileges set
and access is dependent on the assigned privilege. Although
admin/owner security permissions are set for log files and net-
work databases, in deployment scenarios, it is recommended
to consider further access control measures to protect critical
control layer content e.g. role-based authorization.

V. SECURE CONTROLLER INTERFACES

There are three potential interfaces to the SDN controller:
the D-CPI, A-CPI, and I-CPI for Data-Controller, Application-
Controller, and Intermediate-Controller Plane Interface, re-
spectively [18]. To date, the only standardized interface is the
D-CPI and in the OF Switch Specification [18], the use of
TLS (Transport Layer Security) is recommended but optional.
A further interface to the controller is the Graphical User
Interface (GUI). A GUI is commonly provided for ease of
network management and provides a network topology viewer,
network device information and flow table details. Sensitive
communication on any of these interfaces should be protected.

A. Secure Control Layer Communication

A notable improvement with the latest SDN controllers is
their support for TLS across the D-CPI. Secure communication
with SSL/TLS refers to authentication of the parties to a com-
munication (using X.509 certificates) and subsequent encryp-
tion of the data between the parties across the communication

interface. Of the 5 controllers studied, ODL and Ryu support
SSL/TLS as tested with the OVS public key infrastructure
(PKI). ONOS does not provide SSL/TLS support and there is
no mention of SSL/TLS in the description of ROSEMARY. In
addition to supporting TLS on the D-CPI, SE-Floodlight also
supports secure communication across the A-CPL

However, as highlighted in [14], SSL/TLSvl based com-
munication is unable to protect against IP based attacks on
the control channel. Therefore, additional protection against IP
spoofing, TCP Synchronization (SYN), and Denial-of-Service
attacks must be provided. It is recommended that controllers
support a secure version of TLS (e.g. v1.2) or a TLS equivalent
protocol for communication between the application/data lay-
ers and the control layer to mitigate tampering with message
exchanges. Furthermore, certificate/key materials should be
carefully managed to underpin the security of the PKI.

B. GUI/REST API Security

The ability to manipulate the network state via the controller
GUI means that access to the GUI should be protected.
ODL, ONOS, and Ryu each provide a GUI for interacting
with the controller. Apart from ROSEMARY for which no
information is provided, each controller also supports REST
for communication across the A-CPIL.

In the case of ONOS, there is no authentica-
tion/authorization required to access the GUI or applied
to the REST calls. From inside the network, the IP address of
the device hosting the controller is required. ODL provides
some security requiring a user-name/password to log in to the
controller GUI, DLux. The default user-name and password
should be changed. Ryu offers a basic topology viewer rather
than a full GUIL The topology viewer provides a graphical
illustration of the network topology, link status and flow
entries. It is not secured. Despite the extensive security
enhancements introduced in SE-Floodlight, the web user
interface using REST is not access controlled. For secure
deployment, this controller interface should be protected to
prevent information disclosure.

VI. CONTROLLER SECURITY SERVICES

In addition to protecting the control framework and inter-
faces, security services can be introduced to the controller.

A. IDS/IPS Integration

Defense4All is provided with ODL and links to the con-
troller via REST API. Traffic monitoring is provided by au-
tomatically installing traffic counting flows in selected nodes.
The controller produces traffic statistics for attack detection,
which is determined by significant deviation from a normal
traffic baseline. Attack mitigation is provisioned by diverting
traffic through a network-attached Attack Mitigation System
(AMS). The AMS design is out of scope of Defense4All.

The ease of integration of Snort [19], an open-source
intrusion detection engine, with Ryu is demonstrated with
the application, simple_switch_snort.py, provided with the
controller source code. This application installs a flow to

mirror incoming packets to the snort network interface. A set
of custom rules are generated and a packet matching a custom
rule generates a Snort alert that generates an event alert in Ryu.
The code can be extended for intrusion prevention.

In [7], a self-defending wireless network is demonstrated us-
ing SE-Floodlight with the SRI BotHunter and SDN Security
Actuator applications. BotHunter monitors traffic to identify
communication patterns consistent with coordination-centric
malware, BHResponder decides whether the identified asset
should be quarantined from the network, and SDN Security
Actuator links with SE-Floodlight to implement the quarantine
i.e. generate OF rules to redirect suspicious traffic flows.

ODL, Ryu, and SE-Floodlight provide enhanced network
security by integrating these security applications.

B. Authentication and Authorization

Authentication, Authorization, and Accounting (AAA) are
important aspects of the controller design in order to provide
effective access control to users, applications, and resources.
Accounting is discussed in Section VI-D.

Although ONOS does not explicitly implement AAA func-
tions, the applications register with CoreService for a unique
App ID to use ONOS services. Future versions of ONOS
may apply the App ID for AAA functions. The AAA project
was launched in ODL mid-2014. The identity of users is
authenticated, and user access to resources is authorized and
recorded. The user authenticates to the controller with a user-
name/password combination and receives an access token to
access protected resources on the controller. Access to specific
resources is determined by the user role and permissions.

ROSEMARY provides a similar AAA system in which
applications are authorized to access specific controller re-
sources. For privileged system calls, an application authoriza-
tion module determines whether the application is authorized
by investigating its signed key. In SE-Floodlight, authorization
roles are assigned to applications during an application authen-
tication procedure, which involves generation of a runtime cre-
dential to uniquely identify the application. The authorization
role includes a set of associated permissions. The credential is
added to each message produced by the application. Without
the credential, the application will not run.

C. Resource Monitoring

With multiple applications and functions running in the
control framework, it is necessary to protect against any single
application consuming excessive resources.

ROSEMARY has proposed a resource manager to control
application resource utilization (CPU, memory, file descriptor).
A resource table is used to manage the maximum resources
assigned to each application. At the soft limit, an alert is issued
while at the hard limit, resource is capped or the application
is terminated. The other controllers studied do not currently
implement resource management. The benefit of resource
monitoring is not only to effectively manage the available
resources to support an optimum number of applications but
also to monitor anomalous behaviour to identify potentially
malicious or buggy applications.

D. Logging/Security Audit Service

Accounting was identified as a key aspect of AAA (Section
VI-B). Retaining logs relating to resource access and events
provides valuable information to map the sequence of events
leading to a system failure/attack.

Both ONOS and ODL report debug information to a Karaf
log. With Ryu, a dumper file can be configured to capture
required debug information e.g. specific OF events or statistics.
The information can be output to a selected log-file with
default permissions. A system log manager is built into the
ROSEMARY kernel and is used to capture the warnings and
alerts generated by the NOS. SE-Floodlight provides a security
audit service for tracking security-relevant events at the OF
control layer. A set of relevant events is defined in accordance
with the Department of Defense Trusted Computer System
Evaluation Criteria. Use of the audit API is restricted through
the SEK permissions service with audit messages requiring a
minimum of SEC authorization role.

VII. REVIEW AND RECOMMENDATIONS FOR FUTURE
SECURITY IMPROVEMENTS

It is clear from Table II that there is currently no single
SDN controller that includes each of the identified features
for a secure, robust, and resilient SDN controller. ONOS
and ODL focus on the provision of a distributed architecture
while ROSEMARY and SE-Floodlight introduce control layer
resilience and a security-enforcement kernel, respectively. In
addition to the attributes listed in Table II, the following design
recommendations are identified:

(1) Design with Software Security Principles: Privilege
limitation, secure defaults, and sensitive data encryption are
elements of secure software design. Static analysis tools should
also be used to test the security of the controller design
and detect when an inconsistent network state is reached e.g.
NICE [20]. (2) Secure Default Controller Settings: The SDN
controller should be secure throughout the system life-cycle
from initialization to recovery. A safe mode boot process (such
as outlined in ROSEMARY) should be fundamental to all
SDN controller designs. (3) Application Future-Proofing: In
order to support application transferability across controller
platforms, applications should be designed outside the con-
troller and without OF. This requires abstraction of network
communication but will support future D-CPI protocols.

VIII. CONCLUSIONS AND FUTURE WORK

SDN controller design has evolved significantly since the
first NOX OF controller was developed for centralized SDN
control, with improvements in performance, scalability, and
reliability. In this paper, a set of attributes of a secure,
robust, and resilient SDN controller have been presented. The
extent to which current state-of-the-art open-source controllers
support these attributes has been discussed. It is promising that
all except one of the defined security attributes is supported by
one or more controller. The missing feature is the management
of multiple application instances for application resilience.
This must be a design consideration for future controller

developments. With the clear split between high availability
controllers and secure/resilient control layers, the next evolu-
tion in SDN controller design must be a means to achieve the
combined goal of security, robustness, and resilience.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69-74, 2008.

[2] D. Kreutz, F. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodolmolky,
and S. Uhlig, “Software-Defined Networking: A Comprehensive Sur-
vey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14-76, Jan 2015.

[3]1 S. Scott-Hayward, G. O’Callaghan, and S. Sezer, “SDN Security: A
Survey,” in IEEE SDN for Future Networks and Services (SDN4FNS),
2013, pp. 1-7.

[4] OPENDAYLIGHT, “OpenDaylight: A Linux Foundation Collaborative
Project.” [Online]. Available: http://www.opendaylight.org

[5] ON.LAB, “ONOS: Open Network Operating System.”
Available: http://onosproject.org/

[6] Nippon Telegraph and Telephone Corporation, “Ryu Network Operating
System.” [Online]. Available: http://osrg.github.io/ryu/

[7]1 P. Porras, S. Cheung, M. Fong, K. Skinner, and V. Yegneswaran, “Se-
curing the Software-Defined Network Control Layer,” in Proceedings of
the 2015 Network and Distributed System Security Symposium (NDSS),
February 2015.

[8] S. Shin, Y. Song, T. Lee, S. Lee, J. Chung, P. Porras, V. Yegneswaran,
J. Noh, and B. B. Kang, “Rosemary: A Robust, Secure, and High-
Performance Network Operating System,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2014, pp. 78-89.

[9]1 P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, and W. Snow, “ONOS: towards
an open, distributed SDN OS,” in Proceedings of the third workshop on
Hot topics in software defined networking. ACM, 2014, pp. 1-6.

[10] M. Wagner, “Opendaylight patches ’serious vulnerability’-

after 4 months,” 17 December 2014. [Online]. Available:

http://www.lightreading.com/carrier-sdn/sdn-technology/opendaylight-

patches-serious- vulnerability-andndash- after-four-months/d/d-

1d/712626

A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood,

“On controller performance in software-defined networks,” in USENIX

Workshop on Hot Topics in Management of Internet, Cloud, and Enter-

prise Networks and Services (Hot-ICE), vol. 54, 2012.

A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and R. Smeliansky,

“Advanced study of SDN/OpenFlow controllers,” in Proceedings of the

9th Central & Eastern European Software Engineering Conference in

Russia. ACM, 2013, p. 1.

R. Khondoker, A. Zaalouk, R. Marx, and K. Bayarou, “Feature-based

comparison and selection of Software Defined Networking (SDN) con-

trollers,” in Computer Applications and Information Systems (WCCAIS),

2014 World Congress on. 1EEE, 2014.

M. Liyanage, M. Ylianttila, and A. Gurtov, “Securing the Control

Channel of Software-Defined Mobile Networks.”

F. Botelho, A. Bessani, F. M. Ramos, and P. Ferreira, “On the design of

practical fault-tolerant SDN controllers,” in Proc. of the 3rd European

Workshop on Software Defined Networks-EWSDN, vol. 14, 2014.

B. Chandrasekaran and T. Benson, “Tolerating SDN application failures

with LegoSDN.” in Proceedings of the 13th ACM Workshop on Hot

Topics in Networks. ACM, 2014, p. 22.

[17] X. Wen, Y. Chen, C. Hu, C. Shi, and Y. Wang, “Towards a secure

controller platform for openflow applications,” in Proceedings of the

second ACM SIGCOMM workshop on Hot topics in software defined

networking. ACM, 2013, pp. 171-172.

“ONF Specifications.” [Online]. Available: https://www.opennetworking.

org/sdn-resources/onf-specifications

“Snort - Open Source Intrusion Prevention System.” [Online]. Available:

https://www.snort.org

[20] M. Canini, D. Venzano, P. Peresini, D. Kostic, and J. Rexford, “A NICE
way to test OpenFlow applications,” in Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation, 2012.

[Online].

[11]

[12]

[13]

[14]

[15]

[16]

(18]

[19]

