

1

 Introduction
 Background
 Area of research
 Aims
 Contributions

 Authorisation management for BPM
 Example scenario
 Characteristics analysis
 Literature review

 BP-TRBAC
 Concept
 Formalisation
 Example
 Discussion
 review

Agenda

 SPCC
 YAWL
 SPCC
 Implementation
 Results

 BP-XACML
 Policy structure
 Policy Model
 Policy semantics
 Discussion

 Conclusion
 Contribution summery
 Future direction

2

 Business processes is a set of tasks performed in a structured
flow that supports the business goals.

 Business processes are repeatable, and consistent.

Introduction

Business Process Management

3

 BPM includes concepts, methods,

and techniques to support the design, administration,
configuration, and analysis of business processes

Introduction

Business Process Management

	

Process	
Design	

System	
configuration	

Diagnosis	

Process	
Enactment	

BPM	
Lifecycle	

4

 Authorisation is a process that involves granting or
denying permission to an authenticated entity to
access a resource in a particular way (e.g. reading or
writing a file)

Introduction

Authorisation Management

5

 Authorisation Management is concerned with writing
an authorisation policy, storing the policy, managing
the policy, and enforcing the policy.

 Our focus is on:

• Enforcing the policy: an authorisation model that
enforces the policy

• Writing the policy: the language for the authorisation
policy.

Introduction

Authorisation Management

6

Introduction

Research Area

	

Business	Process	
Management	

	
	
	
	
		
	
	
	

Authorisation	Management	

Machine-
readable	

policy	
languages	

	
	

Authorisation	management	
for	BPM	

Technical	
Security	
controls		
	

Area	of	research	
7

This research aims to enable unified
authorisation management in environments

that include business process systems

Introduction

Aims

8

 This research has two sub-aims:

• To provide an authorisation model for business process
environments that control authorisation requests and
enforces the authorisation policies.

• To provide a structured, machine-readable language
that has the ability to represent authorisation policies
for business processes.

Introduction

Aims

9

The first contribution is BP-TRBAC:

 BP-TRBAC extends RBAC to support business process
authorisation constraints.

 It is a a unified independent enterprise-wide authorisation
model

 Khalid Alissa, Jason Reid, Farzad Salim, and Ed Dawson.
Business Process Task-Role-Baseed Access Control Model
(BP-TRBAC). submitted to the International Journal of
Cooperative Information Systems. World Scientific
Publishing Company.

Introduction

Contributions

10

The second contribution is BP-XACML:

 BP-XACML extends XACML to support business process
authorisation policies.

 Also includes a policy model for BP-XACML.

 Khalid Alissa, Jason Reid, Ed Dawson, and Farzad Salim. BP-
XACML: an authorisation policy language for business
processes. In Douglas Stebila and Ernest Foo, The 20th
Australasian Conference on Information Security and
Privacy. Brisbane. Springer. 2015.

Introduction

Contributions

11

 Introduction
 Background
 Area of research
 Aims
 Contributions

 Authorisation management for BPM
 Example scenario
 Characteristics analysis
 Literature review

 BP-TRBAC
 Concept
 Formalisation
 Example
 Discussion
 review

Agenda

 SPCC
 YAWL
 SPCC
 Implementation
 Results

 BP-XACML
 Policy structure
 Policy Model
 Policy semantics
 Discussion

 Conclusion
 Contribution summery
 Future direction

12

 Real-life example business process

 Security-sensitive organisation

 Gathered data from process stakeholders

Authorisation management for BPM

Example scenario

13

Authorisation management for BPM

Example scenario

14

Business rules and authorisation policies associated with this process are:

 The task ‘soft reset’ should not be performed unless a malfunction
notification was received.

 Only the role ‘coordinator’ is allowed to issue work orders.

 A work order can be closed only after receiving both work-order
completion and an invoice.

 Only the person who issued a certain work order is allowed to close it.

 No person is allowed to perform ‘issue work order’ and ‘approve work
order’ for the same ‘work order’.

 No person is allowed to have both roles ‘coordinator’ and ‘contractor’.

Authorisation management for BPM

Example scenario

15

A business process access control model should support the
following characteristics:

• Role-based access control.
• Static and dynamic separation of duties.
• Active access control.
• Instance-level restrictions.
• Task-based access control.
• Supports workflow and non-workflow tasks.

Authorisation management for BPM

Characteristics analysis
Authorisation Model

16

Authorisation management for BPM

Literature Review
Authorisation Model

17

Authorisation policy language for business processes should
be able to represent:

• Users.
• Roles
• Operations.
• Tasks.
• Tasks instance.
• Instance-level restrictions.

• Role-level-SoD restrictions.

Authorisation management for BPM

Characteristics analysis
Policy Language

18

 Authorisation policies are initially authored in plain, human
language.

 To enforce the policy it needs to be translated to a machine-
enforceable language, so systems are able to interpret the policy.

 There have been a number of investigations and studies on
machine readable structured language

 The formalism of languages differs:

 For example, some languages are logical based languages, while other
languages are rule-based languages.

Authorisation management for BPM

Literature Review
Policy Language

19

None of the languages is suitable for business process

authorisation policies.

Either propose a new language or extend a language that already
exists to be able to support authorisation policies for business

processes.

Some languages can be extended

For example XACML does not support RBAC, then a new profile
(RBAC-XACML) extended XACML to support RBAC

Authorisation management for BPM

Literature Review
Policy Language

20

In our case we need an extension to support business process
authorisation policies.

Currently there is no published work that aims to extend
XACML to support business process policies

There are several published works that extend XACML to
support different models but none of them focus on ‘business

processes’.

Authorisation management for BPM

Literature Review
Policy Language

21

 Introduction
 Background
 Area of research
 Aims
 Contributions

 Authorisation management for BPM
 Example scenario
 Characteristics analysis
 Literature review

 BP-TRBAC
 Concept
 Formalisation
 Example
 Discussion
 review

Agenda

 SPCC
 YAWL
 SPCC
 Implementation
 Results

 BP-XACML
 Policy structure
 Policy Model
 Policy semantics
 Discussion

 Conclusion
 Contribution summery
 Future direction

22

Business Process Task-Role-Based
access control (BP-TRBAC)

	

Constraints	
Business	

Process	

User	 Role	 Permission	Task	

Non-
Workflow	

Task	

Session	

Workflow	

Task	

Activation	
condition	

Process	

Instance	

Task	

Instance	
Performers	

List	

23

BP-TRBAC

Conceptualisation

 We have conceptualised BP-TRBAC using ORM.

 Helped to identify details of model elements and relationships.

 ORM model can be found in your handouts.

 24

 A formal description of BP-TRBAC using set theory.

 Described BP-TRBAC and its aspects in formal way

 Including users, roles, permissions, tasks, task-instances,
instance-level restrictions, activation conditions, and role-level
SoD.

 We will show some aspects, for more refer to the handouts.

BP-TRBAC

Formalisation

25

Task and Task-instance:

 Task type (ty) can be either workflow task : (ty=w), or non-workflow task :
(type=n)

 Task (t) is a tuple of id∈N, task type ty∈Ty, and a set of permissions p⊆P
t = (id, ty, p) ∈ N × T y × P

 Permission-task assignment (PTA) is a many-to-many mapping permissions-
to-tasks assignment relation.

PTA⊆P×T
 Task-role assignment (TRA) is a many-to-many mapping tasks-to-roles

assignment relation.
T RA ⊆ T × R

 A task instance (ti) is a tuple of st ∈ ST : ST = {unassigned, active,
completed}, task t ∈ T, and a number n ∈ N. The set of all task instances is
‘TI’.

ti = (st, t, n) : ∀(bp, n′), n = n′

BP-TRBAC

Formalisation

26

Instance-level Restrictions:

 An ‘ir’ rule is written as a tuple of the two task instances and
the type of the restriction (type). The set of all instance-level
restrictions in a system is referred to as ‘IR’.

ir = (ti1, ti2, type) : ti1∧ti2∈ T I and type∈{SoD, BoD}, ir ∈ IR

 An ir means that the user can not be part of the performers list
of both tasks instance, unless each belongs to different
instance.

ir = (t1i,t4j,SoD) → u∈pl(t1i) and u∈pl(t4j) iff I ≠ j

BP-TRBAC

Formalisation

27

Rules from the example with

expression using the introduced formal representations:

 The task ‘soft reset’ should not be performed unless malfunction
notification was received.

(AC(soft reset)= true iff st(receive malfunction
notification)=completed).

 Only the role “coordinator” is allowed to issue work orders.

((issue work order, coordinator) ∈ T RA)

 No work order can be closed until receiving both a ‘work order
completion’ and an invoice.

(AC(close work order)=true iff
(st(complete work order)=completed ∧ st(receive

invoice)=completed)).

BP-TRBAC

Example

28

 Only a person who issued a certain work order is allowed to
close it

(ir=(issue work order, close work order, BoD)).
u ∈ pl(close work orderx) iff u ∈ pl(issue work orderx).

 No person is allowed to perform ‘issue work order’ and ‘review
work order’ for the same ‘work order’.

(ir=(issue work order, review work order, SoD)).
if u ∈ pl(issue work orderx) → u pl(review work orderx).

BP-TRBAC

Example

29

 Point of strength for BP-TRBAC: combining all characteristics,
and maintaining RBAC

 BP-TRBAC is a unified model that is in charge of all
authorisation requests’ decisions

 In terms of implementation, activation conditions can be part
of the authorisation system itself, or through a cooperative
interaction between workflow system and authorisation
system

BP-TRBAC

Discussion

30

BP-TRBAC

Discussion

31

 Introduction
 Background
 Area of research
 Aims
 Contributions

 Authorisation management for BPM
 Example scenario
 Characteristics analysis
 Literature review

 BP-TRBAC
 Concept
 Formalisation
 Example
 Discussion
 review

Agenda

 SPCC
 YAWL
 SPCC
 Implementation
 Results

 BP-XACML
 Policy structure
 Policy Model
 Policy semantics
 Example
 Discussion

 Conclusion
 Contribution summery
 Future direction

32

 We have identified a shortcoming in YAWL as a workflow
system.

 Process modeler has the ability to assign roles to task, who is not a
security expert. The assignments might not be in compliance with
the policy.

 We have identified a subset of BP-TRBAC to produce a security
policy compliance checker (SPCC).

 SPCC is a use-case of BP-TRBAC, it work as a compliance
checker.

BP-TRBAC

A use case

33

 YAWL is a workflow system

 Uses YAWL modeling language.

 Language can automatically be translated to a working system.

SPCC

YAWL

34

SPCC

YAWL

35

SPCC takes in the process modeler’s assignment of a role to
perform a task, and checks if that assignment is in compliance

with the authorisation policy.

SPCC

Security Policy Compliance
Checker

36

Architecture:

SPCC

Security Policy Compliance
Checker (SPCC)

	

Security	Policy	Compliance	Checker	

Security	

Policy	

Compliance	

Checker	
PDP	

YAWL	

Editor	 Engine	
Resource	

Service	

Request	

Decision		

37

Sequence:

SPCC

Security Policy Compliance
Checker (SPCC)

	

YAWL’s	editor	 CC	 PDP	

SPCC	button	push	notification	

Enquire	role	assignment	of	first	tasks	

Sends	formal	request	for	single	assignment	

Sends	final	decision	on	this	assignment	

Sends	formal	request	for	the	next	assignment	

Sends	final	decision	on	this	assignment	

Sends	formal	request	for	final	task’s	assignment	

Sends	final	decision	on	this	assignment	

.	

.	

.	

.	

Get	role	assignment	of	first	tasks	
	

Enquire	role	assignment	of	2nd	tasks	

Get	role	assignment	of	2nd	tasks	
	

.	

.	

.	
	

Enquire	role	assignment	of	Final	tasks	

Get	role	assignment	of	Final	tasks	
	

Sends	final	report	showing	decisions	on	all	
	

assignment	 38

Data Structure:

 Implementation was to test SPCC. We defined our own
structure

 Building this policy structure helped us to recognise the need
for a structured language.

 This opportunity helped us realise the elements and the
structure of such a language

SPCC

Security Policy Compliance
Checker (SPCC)

39

 YAWL Plug-in interface.

SPCC

Implementation

40

SPCC

Results

41

 SPCC as an addition to YAWL, helps in making sure that the
modeler assignments are in compliance with the policy before
run time.

 SPCC originally is meant to check assignments requests against
the organisation’s actual policy. There is a need for a
standardised, structured language, such as XACML for BPM
authorisation policies.

SPCC

Security Policy Compliance Checker

42

 Introduction
 Background
 Area of research
 Aims
 Contributions

 Authorisation management for BPM
 Example scenario
 Characteristics analysis
 Literature review

 BP-TRBAC
 Concept
 Formalisation
 Example
 Discussion
 review

Agenda

 SPCC
 YAWL
 SPCC
 Implementation
 Results

 BP-XACML
 Policy structure
 Policy Model
 Policy semantics
 Discussion

 Conclusion
 Contribution summery
 Future direction

43

 There is a need for a structured machine-readable authorisation
policy language for business process environments.

 XACML is a structured machine-readable authorisation policy
language, but it does not support business process.

 XACML is platform independent authorisation policy language,
consistent, enterprise-wide policies enforcement

 RBAC-XACML supports RBAC but not business processes.

 There is a need for a new profile that extends XACML to support
business process authorisation policies.

BP-XACML

Business Process Authorisation
Policy Language

44

BP-XACML

XACML, RBAC-XACML,
and BP-XACML

TA

PDP

PAP

PL

TPL
Environment, Resource,

Subject

Context handler

REA

PIP

Session

PEP

Workflow

system

Role

PolicySet

Permission

PolicySet

SoD

PolicySet

RoleAssignment

PolicySet

IR

PolicySet

RoleTask

PolicySet

Task PolicySet

45

Requests & Decisions:

 The Request (RQ) is in the form of {S,O,A}

 In BP-XACML there are three types of resource (roles, tasks, normal
resources) whose related policies are defined in three different
policy sets

 In the context of the request, the interpretation of S, O and A are
different for each type.

 Because of this, each type of request is processed by a different
authority.

 The decision (DS) will be either {Allow}, {Deny}, or {Not applicable} if
no matching policies are found.

BP-XACML

Policy Structure

46

 An authorisation policy may contain multiple authorisation
rules (AR), which are the basic building blocks for stating
authorisation restrictions.

 Each AR consists of four elements: Subject, Object, Action, and
Condition, the evaluation of which results in a Allow or Deny
decision

AR = {S, O, A, C} → {Allow, Deny}

 Action (A) is implementation specific. Condition (C) is a
boolean expression that is evaluated based on the value of
variables determined at run time as either true or false.

BP-XACML

Policy Structure

47

Policy Sets:

 ‘Policy sets’ are used to group related policies, which groups related
access control rules.

 A ‘Policy set’ also contains a target, and a policy-combining algorithm.
It may also contain other policy sets included by reference

 BP-XACML includes seven types ‘Policy sets’

 Three ‘Policy sets’ adopted from RBAC-XACML (Role<PolicySet>,
Permission<PolicySet>, and RoleAssignment<PolicySet>)

 Four ‘Policy sets’ newly introduced (SoD<PolicySet>, Task<PolicySet>,
RoleTask<PolicySet>, IR<PolicySet>).

BP-XACML

Policy Structure

48

Policy Sets:

 Standard RBAC request (through PDP):

Role<PolicySet> & Permission<PolicySet>

 Role Activation request (through REA):

SoD<PolicySet> & RoleAssignment<PolicySet>

 Task Performance requests (through TA):

IR<PolicySet>, RoleTask<PolicySet>, & Task<PolicySet>

BP-XACML

Policy Structure

49

TA

PDP

PAP

PL

TPL
Environment, Resource,

Subject

Context handler

REA

PIP

Session

PEP

Workflow

system

Role

PolicySet

Permission

PolicySet

SoD

PolicySet

RoleAssignment

PolicySet

IR

PolicySet

RoleTask

PolicySet

Task PolicySet

Framework:

BP-XACML

Policy Model

50

Standard RBAC Requests

BP-XACML

Policy Structure

· PPS

· One per role.

· Combining algorithm: Permit override.

· Target: not restricted.

· Contains: One policy for all allowed permissions for this role.

 - Target: not restricted

 - Combining algorithm: Permit override.

 - Contains: A Rule for each permission the role can perform.

 Effect: permit

 Target: restricted by match to resource name.

· Deny if no rule permits.

· PPS can point to a PPS of a junior role.

Permission<PolicySet>

Role<PolicySet>

· RPS

· One per Role.

· Combining algorithm: Permit override.

· Target: restricted by subject match to role.

· Points to the corresponding PPS.

Permission
.
.

Permission

Permission<PolicySet>

	

SoD<PolicySet>	
	

RoleAssignment<PolicySet>	
	
·RAPS	
·One	only	per	system.	
·Combining	algorithm:	Permit	override.	
·Target:	not	restricted.	

	

·Contains:	One	policy	for	each	User.	
-	Target:	restricted	by	subject	ID	match.	
-	Combining	algorithm:	Permit	override.		
-	Contains:	A	rule	for	each	role	the	user	is	allowed		
																					to	activate.	
	 -	Target:	restricted	by	resource	match	on	role.		
	 -	Effect:	permit.	

	
·Deny	if	no	policy	Permit.	

	

·SoDPS	
·One	only	per	system.	
·Combining	algorithm:	Deny	override.	
·Target:	not	restricted.	

	

·Contains:	One	policy	for	each	Role	that	
has	a	conflicting	role.	
-	Target:	restricted	by	resource	match	on	role.	
-	Combining	algorithm:	Deny	override.		
-	Has	a	Rule	that	returns	‘deny’	if	SoD	
restriction	is	violated.	

	
	

·At	the	end	it	has	a	pointer	that	points	to	
the	RAPS.	

	

Role activation Requests

51

Task Performance Requests

BP-XACML

Policy Structure

IR<PolicySet>

RoleTask<PolicySet>

· RTPS

· One only per system.

· Combining algorithm: Permit override.

· Target: not restricted.

· Contains: One policySet for each Role.
- Target: restricted by subject role match.

- Combining algorithm: Permit override.

- Points to the corresponding TPS.

· Another policySet for another Role.
- Target: restricted by subject role match.

- Combining algorithm: Permit override.

- Points to the corresponding TPS.

· IRPS

· One only per system.

· Combining algorithm: Deny

override.

· Target: not restricted.

· Contains: One policy for each task

that has an IR.
- Target: restricted by resource match on

task name.

- Combining algorithm: Deny override.

- Has a Rule that will returns ‘deny’ if IR

violated.

· At the end it has a pointer that

points to the RTPS.

· TPS

· One per role.

· Combining algorithm: Permit override.

· Target: not restricted.

· Contains: One policy for all allowed tasks for

this role.

o Target: not restricted

o Combining algorithm: Deny override.

o Contains: Rule for each task the role can

perform.

 Effect: permit

 Target: restricted by resource match to

task name.

· Deny if no rule permits.

· TPS can point to a TPS of a junior role.

Task<PolicySet>

Task

.

.

Task

Task<PolicySet>

52

TA

PDP

PAP

PL

TPL
Environment, Resource,

Subject

Context handler

REA

PIP

Session

PEP

Workflow

system

Role

PolicySet

Permission

PolicySet

SoD

PolicySet

RoleAssignment

PolicySet

IR

PolicySet

RoleTask

PolicySet

Task PolicySet

Framework:

BP-XACML

Policy Model

53

Authorities and Repositories:

BP-XACML

Policy Model

	

Context	handler	

PDP	

PAP	REA	

PIP	

Session	

PEP	

PL	Workflow	
system	

TA	

Environment,	Resource,	
Subject	

	

TPL

54

Role activation Request:

BP-XACML

Policy Model

	

7
.	R

o
le

	a
tt

ri
b

u
te

	&
	s

ta
tu

s	

8
.	R

o
le

	e
n

ab
li

n
g

	d
ec

is
io

n
		

Context	
handler	

PAP	REA	

PIP	

Session	

PEP	

1.	Load	

SoD<PolicySet>	

2.	Role	activation	request	

Workflow	
system	

3
.	R

o
le

	a
ct

iv
a

ti
o

n
	q

u
e

ry
	

4
.	R

o
le

	a
tt

ri
b

u
te

	q
u

er
y

	

5.	User	session	query	

9.	Response	

6.	Role	enabling	state	

10.	Updates	role	session	status		

Environment,	Resource,	
Subject	

	

	

4.	Query	

3.	Access	Request	

7.	Attributes			

8.	Decision	

2.	Permission’s	performance	
request	

6.	Attributes			

5.	Query	

Context	
handler	

PDP	

PAP	

PIP	

PEP	

1
.	L

o
ad

	R
o

le
		 	

<
P

o
li

cy
S

et
>

	

9.	Response	

Environment	
Resource	

Subject	
	

Standard RBAC Request:

55

Task Performance Request:

BP-XACML

Policy Model

	

12.	Query

15.	Attributes			

17.	Response	

13.	Query

14.	Attributes			

10.	Task’s	permissions	list		

9.	Task’s	permissions	query		

TPL	

Context	
handler	

PDP	

PAP	

PIP	

PEP	

1.	Load	

Role	
<PolicySet>	

PL	

Workflow	
system	

11.	Access	Request	

4.	IR	query	

2.	Task	performance	request	

7.	IR	status		

16.	Decision	

18.	Updates	task	performers	list		

5.	Task	performer	query	

6.	Task	performers	

TA	

1
.b

.	L
o

a
d

	

IR
	<

P
o

li
cy

S
et

>
	

3.	Request	to	perform	a	task	

8.	Decision	

56

 Extended the RBAC-XACML semantics.

 Task and task instances are not supported in RBAC- XACML

 Tasks are expressed as an XACML Resource. Task instance are
expressed as a resource attribute called instance.

BP-XACML

Policy Semantics

57

Role level SoD:

 SoD is expressed as rules in the SoD <PolicySet>.

 The function ‘Session’ is a new function. It takes one argument
of data-type ”..#string”, which is the user’s ID, and returns a list
of all roles currently activated for this user

BP-XACML

Policy Semantics

Instance-level Restrictions:

 IR expressed as rules in the IR<PolicySet>.

 The function ‘PL’ is a new function that retrieves the
performers list of a specific task for a specific instance. It takes
two arguments of data-type ”..#string”, which are a task name
and an instance number. It returns a list of all users who
performed the task for this instance. 58

 BP-XACML support the notions of task, task instance, instance-
level restrictions, and role-level SoD.

 BP-XACML support sessions and the idea of having multiple
roles active at the same time.

 BP-XACML can be used with workflow authorisation model.

 Because of backward compatibility, BP-XACML can be used
with NIST-RBAC authorisation models.

BP-XACML

Discussion

59

 Final Decision is based on the current organisation policies

 TA decision is not enough

 Task-Permissions List (TPL): a function that takes in a task ID
and sends back a list of permissions associated with the task.

BP-XACML

Discussion

60

 Introduction
 Background
 Area of research
 Aims
 Contributions

 Authorisation management for BPM
 Example scenario
 Characteristics analysis
 Literature review

 BP-TRBAC
 Concept
 Formalisation
 Example
 Discussion
 review

Agenda

 SPCC
 YAWL
 SPCC
 Implementation
 Results

 BP-XACM
 Policy structure
 Policy Model
 Policy semantics
 Example
 Discussion

 Conclusion
 Contribution summary
 Future direction

61

 BPM is growing in use

 Authorisation policies need to be enforced all the time

 Business process environments has special authorisation constraints

 Current authorisation models are not suitable for business process
environments

 Current authorisation policy languages do not have the ability to represent
business process authorisation constraints.

 There is a need for enforcing authorisation policies in business process
environments

 BP-TRBAC is a model to enforce authorisation policies in mixed-
environments, that include business process and non-business process
systems.

 BP-XACML is a structured, machine-readable language to write the
authorisation policies

Conclusion

Summary

62

 A case scenario from a real life security-sensitive environment:
After collecting data and interviewing stakeholders we were
able to provide the scenario.

 The characteristics of an authorisation model for business
process environments, and the characteristics that a business
process authorisation language should satisfy.

Conclusion

Contributions

63

 Proposed BP-TRBAC, a unified organisation-wide business
process authorisation model. BP-TRBAC is designed to support
all the required characteristics.

 A use-case implementation is provided. The use-case is
intended to check design time assignments. The
implementation showed that SPCC was able to communicate
with YAWL.

Conclusion

Contributions

64

 Proposed BP-XACML an authorisation policy language for
business processes. It can also support standard RBAC
policies. BP-XACML is designed to support all the required
characteristics. The policy language is generic.

 A policy model for BP-XACML is provided. It showed how using
this language a system can handle and evaluate authorisation
requests. The policy model is in compliance with the
authorisation model BP-TRBAC.

Conclusion

Contributions

65

 Full BP-TRBAC implementation in an operational environment.

 Testing non-functional capabilities.

 Implementing SPCC using BP-XACML as the policy language.

 Implement the BP-XACML policy model

Conclusion

Future research directions

66

 I would like to acknowledge the contribution made by many
stakeholders involved in the Airports of the Future project
(www.airportsofthefuture. qut.edu.au). Part of this research
was undertaken as a part of the Airport of the Future project
(LP0990135), which is funded by the Australian Re- search
Council Linkage Project scheme.

 Special thanks to Dr. Farzad Salim for his help, supervision, and
professional support throughout my studies.

 I would like to thank Dr. Michael Adams, Nishchal Kush, and
Nicholas Rodofile for their help with the SPCC implementation.

Acknowledgment

67

..:: Thank you ::..

68

