
Extended Abstract: Source Code Patterns of

Software Vulnerabilities

Felix Schuckert

April 18, 2017

1 Introduction

Looking into the CWE [2] top 25 show SQL Injection (CWE-89) in first place,
Buffer Overflow (CWE-120) in third place and Cross Site Scripting (CWE-79)
in the fourth place. Vulnerabilities of these categories are not new. They already
exist for a long time. To discover the reason why the same vulnerabilities are
occurring, we investigated the source code from open source projects. Similar
methods and operations are grouped and are called source code patterns. Our
work shows which source code patterns occur in real life projects, to provide a
data set that can be compared to existing vulnerability data sets like SAMATE
SARD [5]. The first question to be answered is: How do such source code
patterns look like? The next question is, are there any special cases that are
not typical for these vulnerabilities? Real source code samples are investigated
to get answers to these questions.

We use a crawler to get source code from open source projects. CVEs in the
Cross Site Scripting category using PHP as programming language are reviewed.
We choose PHP because it is a popular programming language. Additionally,
in PHP a lot of vulnerability from different categories are possible. For the
Buffer Overflow category, we choose vulnerabilities from Firefox because the
source code is accessible and they provide a good bug reports with bugzilla. We
categorize the manual review results in source code patterns.

2 Data Sources

A manual review requires a selection of data. We focus on vulnerabilities that are
tracked in the CVE [1] database. For Buffer Overflows Firefox provides enough
vulnerabilities for doing a manual review process. CVEs between 2010 and 2015
(six years) are used as data samples. Firefox provides enough corresponding
CVEs to cover the Buffer Overflow category. 50 random CVEs are chosen in
the given time frame. Cross Site Scripting does not have an open source project
that has enough corresponding CVEs. For this category a crawler looks up CVE
Details [3] for entries that have Cross Site Scripting and contain any GitHub
[4] commit links. It found in 4,279 Cross Site Scripting CVEs 177 GitHub links.
For each link the patch that fixes the vulnerabilities is looked up. The most
used programming language is PHP with 101 patches. From these 101 patches
50 are chosen randomly and are used as our data set for the review process.

1



For SQL injection 37 CVEs with corresponding GitHub confirm links are found.
These are used to look up for source code patterns.

3 Results

For each vulnerability category different parts were reviewed. For SQL Injec-
tion sources, string concatenation, sinks, failed sanitization and fixes
were reviewed. Different methods that are used for these parts are illustrated.
Very similar are the source code patterns for Cross Site Scripting. They were
reviewed for sources, string concatenation, sinks and fixes. Instead for
Buffer Overflows the patterns for type of errors, sinks and fixes were re-
viewed. The source are missing because of the complexity of the source code.
Additionally, there is no reliable tool to do a reverse data flow analysis that
would be required to get all possible sources.

Some special cases are explained that show unexpected patterns. The results
show that some developers still miss basic knowledge about software security.
Buffer Overflow instead usually have some kind input check (sanitization). But
these checks failed because of different kind of errors. A common mistake were
Integer overflows and resulting values were used in the checks or for allocating
memory. In future the results will be used for insecurity refactoring to create
different code patterns that occurred in real projects.

References

[1] Common Vulnerabilities and Exposures. https://cve.mitre.org/.

[2] Common Weakness Enumeration. https://cwe.mitre.org/.

[3] CVE Details. https://www.cvedetails.com/.

[4] GitHub. https://github.com/.

[5] SAMATE - SARD. https://samate.nist.gov/SARD.

All links were last followed on March 24, 2017.

2


