

Constrained approximate search in misuse-based intrusion detection

Ambika Shrestha Chitrakar Supervisor: Prof. Slobodan Petrovic

> FINSE 10th of may 2017

Contents

- Introduction
 - Snort: a misuse-based intrusion detection
 - Problem with Snort
 - Proposed solutions
- Background and related work
 - Approximate search
 - Constrained approximate search
- CRBP-OpType and CRBP-OpCount
- Experiment and results
- Discussion and Conclusion

Introduction

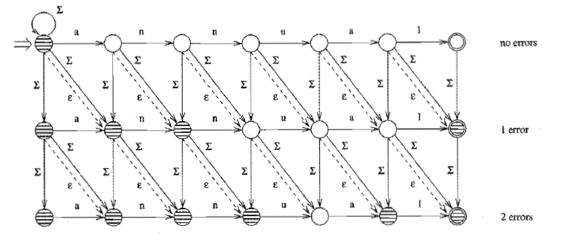
- Snort: a misuse-based intrusion detection
 - Detects intrusions based on attack signatures stored as rules
 - One of the ways to detect attacks is by matching the payload information of the network traffic with the content field of the Snort rules
 - Uses Aho-corasick (exact search)
- Problem with Snort:
 - Snort fails to detect new attacks
 - Moreover, same attacks with small changes in the attack pattern can also evade Snort
- Proposed solutions:
 - Approximate search?
 - What about constrained approximate search?

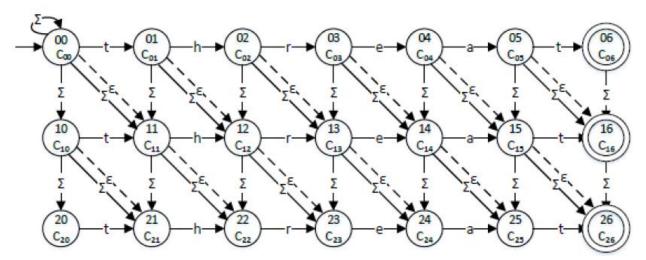
Background

- Approximate search:
 - Allows some level of errors/tolerance to find the occurrences of the search pattern in the given string
 - Uses distance functions such as hamming distance, Lavenshtein distance
 - Given string T=abbaccacbbadrbbb, and pettern P = bbba, find all the occurrences of P in T with errors k=1, using edit distance
 - abbaccacbbadrbbb occurrences at position 4, 11, and 16
 - Application: digital forensics, text-retrieval, computational biology etc.

Background

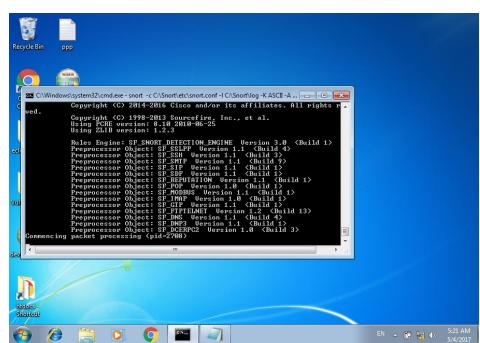
- Constrained approximate search:
 - More precise than approximate search
 - Errors can be defined on the type of edit operation
 - Only substitutions, only deletions and substitutions, only insertions and substitutions etc
 - Errors can also be defined on the allowed number of each edit operations
 - If k=5, insertions=1, deletions=2, substitutions=2
- When to use constrained approximate search?
 - When one knows the probability of errors and want to be more precise than unconstrained approximate search
 - Given a set of strings T: {threat, thrett, treat} and pattern P: threat, find all the occurrences of P in T, with errors k=1 and constraint only 1 substitution
 - Matches threat with 0 error
 - Matches thrett with one character substitution
 - No match with treat, but its a match when unconstrained approximate search is applied


Related work

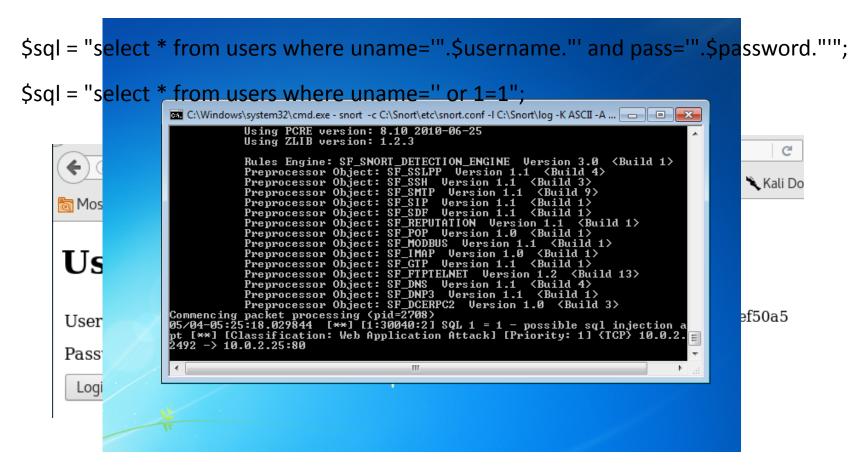

- Constraints on indels: Sankoff-Indels
 - Based on dynamic programming
- Constraints on indels: CRBP-Indels
 - based on automata theory
- Constraints on each edit operations: CRBP-OpCount
 - Based on automata theory

CRBP-OpType and CRBP-OpCount

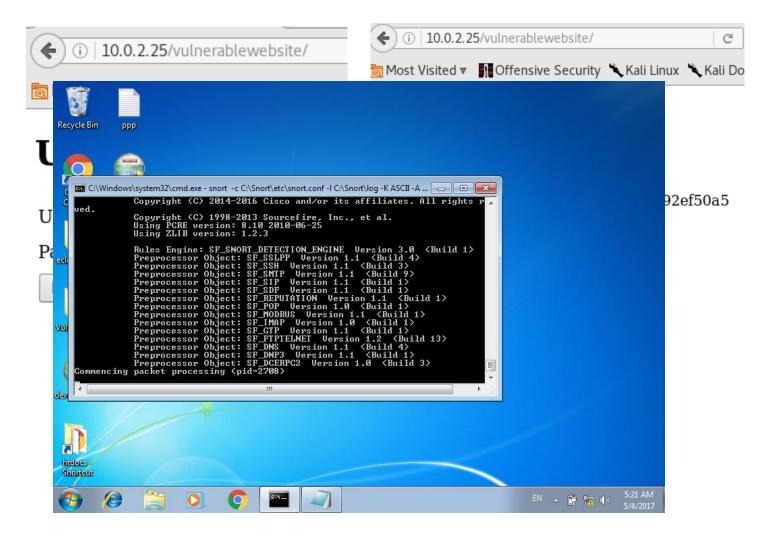
• Based on Row-wise Bit-Parallel algorithm by Wu and Manber



Experiment


Attacker machine

Victim machine (web server)



Experiment

Experiment

Results

	Pattern	k	Total	ТΡ	FP	ΤN	Time
	1=1	2	200	10	190	0	10
RBP	'1'='1'	4	1813	182	1619	12	43
	Pattern	k	Total	ТР	FP	τN	Time
	1=1	s=2	200	10	159	31	9
CRBP-OpType	'1'='1'	is=4	1813	182	1594	37	33
	Pattern	k	Total	ТР	FP	τN	Time
	1=1	s=2	200	10	159	31	21
CRBP-OpCount	'1'='1'	i=2,s=2	1813	182	977	654	144

Discussion

- Constrained and unconstrained search algorithms can be used to detect new similar attacks
- Unconstrained approximate search can generate lot of false positives
- CRBP-OpType and CRBP-OpCount algorithms can be used to reduce the number of false positives
- Better to use CRBP-OpType algorithm if attacks can be detected by specifying the type of edit operations
- Better to use CRBP-OpCount if we know the probability of changes in each edit operations
- CRBP-OpCount is complex compared to CRBP-OpType, due to use of counters in each states

Conclusion

- Exact search is important when attack signatures does not vary for a particular attack
- Unconstrained approximate search is useful when attack signature can vary by some edit operations and probability of error type is unknown
- The constrained approximate search can be used when probability of error types is known

Thank you!