
Scalable Data Processing and Analytical
Approach for Big Data Cloud Platform

by

Bikash Agrawal

A dissertation submitted in partial satisfaction of

the requirements for the degree

PHILOSOPHIAE DOCTOR (PhD)

Faculty of Science and Technology
Department of Electrical Engineering and Computer Science

March 2017

University of Stavanger
N-4036 Stavanger
NORWAY
www.uis.no

c© Bikash Agrawal, 2017
All rights reserved.

ISBN 978-82-7644-704-0
ISSN 1890-1387

PhD Thesis UiS no. 338

www.uis.no

Big Data Humor: Hiring a Data Scientist. c© Daniel Gutierrez.

iii

Summary

In the current “information explosion era”, data is increasing dramatically
every year. Tackling the challenges posed by collecting large-scale data is
trending to a superabundance of data management systems characterized
by horizontal scalability.

Data has become a critical commodity in organizations and data ana-
lysts are struggling to make optimal business decisions, due to the chal-
lenges in Big Data management: volume, velocity, variety, veracity, and
value. Large-scale data analytics is turning into a computational resource
paradigm due to already unprecedented yet fast growing requirements
such as scalability, data intensiveness, high availability, fault tolerance,
and the ability to handle diverse data structures. As these problems grow
in scale, parallel computing resources are required to meet computational
and memory requirements. The growing demand for large-scale data anal-
ysis and mining applications has resulted in both industry and academia
designing highly scalable data-intensive computing platforms.

Large-scale analysis requires clusters of connected computers to allow
high performance in environments such as cloud computing. As cloud
computing clusters grow in size, the following key challenges have arisen:
heterogeneity of the system, hidden complexities, time limitations, and
scalability. Other challenges such as failure prediction and anomaly detec-
tion of components in the cluster components are also important factors
that must be addressed while running Big Data applications. Although,
some solutions to these challenges are already available for small-scale
systems, a scalable approach for effective performance diagnosis and pre-
diction is needed. This dissertation addresses these needs and proposes
solutions (like a distributed scalable analytics framework) that enrich
the cloud platform and enable high-performance processing on a large
scale. The contribution of this dissertation is demonstrated by applying
state-of-the-art processing framework and consequently improving data
center overall performance by predicting failures and detecting anomalies.
The framework enables Big Data applications to gain an advantage using
cloud computing such as scalability and elasticity.

Additionally, it proposes a state-of-art solution for permanently deleting
data stored by Big Data applications. Herein solutions for securely deleting
cloud data are evaluated, and a novel secure deletion tool for Hadoop
clusters is also proposed.

v

Preface

This dissertation is submitted in partial fulfillment of the requirement for
the degree of Philosophiae Doctor (PhD) at the University of Stavanger,
Norway. The research presented has been and are carried out at the
University of Stavanger during the period from September 2013 to August
2016, and at the Purdue University, West Lafayete, Indiana; USA during
the period from October 2015 to March 2016.

The dissertation is based on the research papers listed below. The papers
have been reformatted to correspond with the format of the dissertation,
and in relation to this, all papers have been reviewed for any spelling,
grammar and formatting issues. Please note, the content is that of the
original publications is self-contained.

vii

Acknowledgements

I would like to express my profound gratitude to my supervisor Dr.Tomasz
Wiktorski. He has always been available for dialogue, offered constructive
feedback through the course of the work and provided a plenitude of
development opportunities that had key impact on this and further work.

I would also like to thank my co-supervisor Prof. Chunming Rong for
providing necessary feedback, inspiration, and guidance throughout my
PhD work.

I would also like to thank all that had influence on the contents of
this dissertation: Prof. Raymond Hansen, and Prof. Thomas Hacker of
Purdue University. I would further like to thank Dr.Klaus Petritsch (for
proof reading), and Mr.Michael J. Salerno for reviewing and providing
necesssary feedback on this dissertation.

Last but not least, I would like to thank my friends and family, for their
love and support during this work.

Bikash Agrawal, March 2017

ix

Contents

List of Papers . xv

1 Introduction 1

1.1 Motivation . 1

1.1.1 Organization . 2

2 Background 3

2.1 Big Data . 3

2.2 The Large-Scale Distributed Processing 6

2.3 Big Data Technologies . 7

2.3.1 Hadoop . 8

2.3.2 HBase . 10

2.3.3 OpenTSDB . 10

2.3.4 R and RHIPE . 11

2.3.5 Apache Spark . 11

2.3.6 Apache Kafka . 11

2.4 Data Science . 12

2.5 Machine Learning . 12

2.5.1 Hidden Markov Models 14

2.5.2 Robust PCA (Principal Component Analysis) . . . 14

2.5.3 Ensemble . 15

2.5.4 FM (Factorization Machines) 15

2.5.5 Random Forest . 16

2.5.6 TF-IDF . 16

2.5.7 Naive Bayes . 17

2.5.8 K-nearest neighbors 17

2.5.9 XGBoost . 17

2.5.10 Neural Network . 17

2.5.11 Feature Engineering 18

2.6 Cloud Computing . 18

xi

3 Contributions 23
3.1 Research Questions . 25
3.2 Overview . 27

3.2.1 Application Layer 27
3.2.2 Analytic Layer . 27
3.2.3 Big Data Processing Layer 28
3.2.4 Infrastructure Layer 29
3.2.5 Security Layer . 29

3.3 Paper I: R2Time: A framework to analyse OpenTSDB
timeseries data in HBase. 30

3.4 Paper II: Analyzing and Predicting Failure in Hadoop Clus-
ters Using Distributed HMM. 31

3.5 Paper III: Secure Deletion in Hadoop Distributed File System. 33
3.6 Paper IV: Adaptive Anomaly Detection in Cloud using

Robust and Scalable Principal Component Analysis. . . . 34
3.7 Paper V: AFFM:Auto Feature Engineering in FFM for

Predictive Analytics. 35
3.8 Paper VI: Enrichment of Machine Learning based Activity

Classification in Smart Homes using Ensemble Learning. . 36

4 Conclusion and Future Work 39
4.1 Conclusion . 39
4.2 Future Work . 40

Paper I: R2Time: a framework to analyse OpenTSDB time-
series data in HBase. 47
1 Introduction . 50
2 Background . 50

2.1 Hadoop . 51
2.2 HBase . 51
2.3 OpenTSDB . 51
2.4 R and RHIPE . 51

3 Design And Implementation 52
3.1 Row Key Design 52
3.2 Data Retrieval . 54

4 Result And Analysis . 54
4.1 Performance of Statistical Functions 56
4.2 Scalability Test . 57
4.3 Performance based on Scan Cache 58

5 Related Work . 60

xii

6 Conclusion . 61

Paper II: Analyzing and Predicting Failure in Hadoop Clus-
ters Using Distributed Hidden Markov Model 65
1 Introduction . 68

1.1 Related work . 69
1.2 Our Contribution 70
1.3 Paper Structure 70

2 Background . 71
2.1 Hadoop . 71
2.2 Hidden Markov Models 71

3 Approach . 71
4 Result . 77

4.1 Types of error . 78
4.2 Predicting failure state in Hadoop cluster. 79
4.3 Scalability . 81

5 Conclusion . 83

Paper III: SD-HDFS: Secure Deletion in Hadoop Distributed
File System 89
1 Introduction . 92

1.1 Our Contribution 94
1.2 Related Work . 94
1.3 Paper Structure 95

2 Background . 95
2.1 Hadoop: . 95
2.2 Apache Common: 99
2.3 Fourth Extended Filesystem (Ext4): 99

3 Approach . 99
4 Result . 104

4.1 Data Consistency 105
4.2 Secure Deletion . 106
4.3 Execution Time . 109

5 Conclusion . 111

Paper IV: Adaptive Anomaly Detection in Cloud using Ro-
bust and Scalable Principal Component Analysis 117
1 Introduction . 121

1.1 Our Contribution 122
1.2 Related Work . 122

xiii

1.3 Paper Structure 123
2 BACKGROUND . 124

2.1 Robust PCA (Principal Component Analysis): . . 124
2.2 Spark: . 124
2.3 Hadoop: . 125

3 APPROACH . 125
4 EMPIRICAL EVALUATION 132

4.1 Anomaly Detection: 133
4.2 Accuracy Test: . 137
4.3 Scalability test: . 139
4.4 Benchmark test: . 141

5 Conclusion . 143

Paper V: AFFM: Auto Feature Engineering in Field-Aware
Factorization Machines for Predictive Analytics 149
1 Introduction . 152

1.1 Our Contribution 153
1.2 Paper Structure 153
1.3 Related Work . 153

2 Background . 154
2.1 FM (Factorization Machines): 154
2.2 Feature Engineering: 154

3 Approach . 155
3.1 FFM Learning rate: 158
3.2 Feature Engineering: 158

4 Result . 160
5 Conclusion . 161

Paper VI: Enrichment of Machine Learning based Activity
Classification in Smart Homes using Ensemble Learning 163
1 Introduction . 166
2 Background . 167
3 Methodology . 168

3.1 Feature Extraction 169
3.2 Learning Models 170

4 Emperical Evaluation . 170
4.1 Data Description: 170
4.2 Evaluation: . 172

5 Related Work . 175
6 Conclusion . 176

xiv

List of Papers

The following papers are included in this thesis:

• Paper I

R2Time: a framework to analyse OpenTSDB timeseries
data in HBase.
B. Agrawal, A. Chakravorty, C. Rong, T. Wiktorski
Published in the proceedings of 2014 IEEE 6th International Con-
ference on Cloud Computing Technology and Science (CloudCom).

• Paper II

Analyzing and Predicting Failure in Hadoop Clusters Using
Distributed Hidden Markov Model
B. Agrawal, C. Rong, T. Wiktorski
Published in the proceedings of 2015 6th International Conference
on Cloud Computing and Big Data in Asia.

• Paper III

SD-HDFS: Secure Deletion in Hadoop Distributed File Sys-
tem
B. Agrawal, R. Hansen, C. Rong, T. Wiktorski
Published in the proceedings of 2016 IEEE 5th International Congress
on Big Data (BigData Congress).

• Paper IV

xv

Adaptive Anomaly Detection in Cloud using Robust and
Scalable Principal Component Analysis
B. Agrawal, T. Wiktorski, C. Rong
Submitted to Concurrency and Computation: Practice and Expe-
rience and is under review. It is an extended version of the paper
published in the proceedings of 2016, 15th International Symposium
of Parallel and Distributed Computing (ISPDC2016).

• Paper V

AFFM: Auto Feature Engineering in Field-Aware Factor-
ization Machines for Predictive Analytics
L. Selsaas, B. Agrawal, C. Rong, T. Wiktorski
Published in the proceedings of 2015 IEEE International Conference
on Data Mining Workshops (ICDM Workshops).

• Paper VI

Enrichment of Machine Learning based Activity Classifica-
tion in Smart Homes using Ensemble Learning
B. Agrawal, A. Chakravorty, T. Wiktorski, C. Rong
Accepted to the proceedings of 2016 ACM 3rd International Work-
shop on Smart City Clouds: Technologies, Systems, and Applications
(SCCTSA).

xvi

Chapter 1

Introduction

1.1 Motivation

Despite the fact that the term Big Data has become part of mainstream
vocabulary, there is no comprehensive definition of what the phrase “Big
Data” truly means. Data scientists posit the idea that the Extraction,
Transformation and Load (ETL) for a massive data is the best definition of
the of Big Data concept [12] [28] [13]. This depiction of Big Data depends
on five information characteristics: volume, velocity, variety, variability
and value (the 5Vs) [3] [9]. As the number of devices, sensors, and people
connected to the global network increases, the amount of data and the
need to communicate, share, and access the data increases. This increase
in the data volume cannot be processed using traditional methods.

The Internet Data Center assessed estimated that the development
amount of information would grow by a factor of 300 between 2005 and
2020, while expecting to increase data amount from 130 Exabytes to 40,000
Exabytes [15].

Futhermore, the discovery of data insights refocused information man-
agement on a new analytic paradigm- Data Science in which applications
need to scale and ensure they do not overwhelm the 5Vs (volumes, veloci-
ties, varieties, variabilities, or values). This results in what is called “the
Big Data phenomenon”.

The existing Big Data tools (e.g., HDFS, MapReduce, Spark, Flink
etc.) require partitioning and distribution of data for processing across
multiple data centers. The need to process the data depends on data size
and the location of data sources. The main challenge will be to enable
faster execution times for Big Data processing [2]. In other words, the

1

Chapter 1. Introduction

main features of data-intensive paradigm are scalability and efficiency.
Cloud computing is another factor that accelerates the revolution of Big

Data. Large, geo-located data centers of clouds enable the computational
power of infrastructure, while on-demand scaling provides opportunities
for Big Data scenarios. The cloud infrastructure allows users to avoid the
burden of managing complex distributed hardware and also provides an
infinitely scalable infrastructure. Therefore, users focus directly on renting
and scaling their services for better resource utilization and can compile
according to the application’s processing needs.

However, problems with cloud infrastructure availability and perfor-
mance can lead to extensive financial losses. Therefore, it is crucial to
address performance as an explicit objective. There is also a need for
automated failure diagnostics and predictive analytics, which enables the
cloud providers to manage their data center proactively. This dissertation
provides a framework for autonomic and scalable analytics, which makes
it possible to explore a large amount of data for both automated failure
diagnostics and anomaly detection that accelerates cloud performance and
availability.

This dissertation proposes a diversified and efficient extensions to cloud-
based Big Data framework as a key milestone. This dissertation provide
a framework that can help to improve the accuracy and speed of data
center by predicting the failure of computing nodes and jobs in Hadoop
clusters as well as detecting anomalous behavior of Big Data applications
running in cloud infrastructure. Finally, this dissertation provides a secure
deletion technique which enhances transparency to the user when dealing
with a distributed file system in a massive infrastructure.

1.1.1 Organization

This dissertation is organized as a collection of research papers and divided
into two parts. In the first part, the motivation, relevant background, and
a discussion is presented. The second part, consists of research articles
that contribute to the dissertation.

Part 2 consists of a collection of six research papers: Paper I proposes
a novel distributed data storage and processing framework. Papers II,
and IV demonstrate large-scale analytics to predict failure and to detect
anomalies in a data center. Paper III presents a state-of-art solution for
deleting the data generated for papers II, and IV permanently. Finally,
paper V and VI demonstrate the data analytics application.

2

Chapter 2

Background

This chapter provides an overview of different technologies and terminology
used in the enclosed papers.

2.1 Big Data

In “information explosion era”, a massive amount of data is continually
generated at an unprecedented and ever increasing scales. This enormous
volume of data is collected and studied in various domains. Data generated
from a variety of connected devices are growing at an exponential rate. In
2011, digital information grew nine times in volume in just five years [25]
and its amount is projected to reach 35 trillion gigabytes by 2020 [33].
That torrent of data is emerging from a wide and ever growing array of
sources. Some examples of large datasets and their respective growth rates
are listed below [21]:

• The New York Stock Exchange generates about one terabyte of data
per day.

• Facebook hosts approximately 10 billion photos, taking up one
PetaByte of storage.

• Ancestry.com, stores around 2.5 petabytes of data.

• Ebay generates more than 50 terabytes of data per day.

• Google generates 40000 search queries per second.

• The internet archive stores around 2 petabytes of data, and is
increasing at a rate of 20 terabytes per month.

3

Chapter 2. Background

• The Large Hadron Collider produces about 15 petabytes of data per
year

• Radiology data produces 69 petabytes per year.

• Internet of Things: 25-50 billion connected devices will be on the
Internet by 2020

• Self-driving car will produce 100 million megapixel images which are
almost 100 terabytes to train in deep learning.

• Exascale simulation will generate terabytes per second.

• The Square Kilometer Array Telescope will produce 100 terabits/sec-
ond (400 exabytes per year)

Figure 2.1: The 5 key challenges in Big Data

As more and more systems generate data, which is produced in ever-
increasing quantities, the scalability of algorithms is essential for successful
data management. This is the movitation for development and study of
“Big Data”.

The National Institute of Standards and Technology (NIST) describes
Big Data as “a collection of extensive datasets primarily in the characteris-
tics of volume, variety, velocity, and/or variability that require a scalable
architecture for efficient storage, manipulation, and analysis” [8].

4

2.1. Big Data

These are the key characteristics of Big Data shown in Figure 2.1, and
are commonly referred to as the Vs’ of Big Data.

Table 2.1: 5Vs of Big Data

Volume quantity, from terabytes to zettabytes

Velocity batch processing to real-time processing

Variety structured, semi-structured and unstructured

Veracity quality, relevance, trustworthiness, accountability

Value predictive value

• Volume: The volume of Big Data is described as the amount of
data coming in. The volume typically ranges from gigabytes to
exabytes and beyond. Facebook alone generates 10 billion messages,
4.5 billion click events, and 350 million photograph uploads every
day. This amount of volume is not only storage challenge, but also
a massive computational goal for data analysis.

• Variety: Describes the organization of data. Although the develop-
ment of “Big Data” technology produced structured, unstructured,
and semi-structured data, today , 80% of the world’s data is un-
structured and therefore cannot be entered easily into relational
databases.

• Velocity: Velocity means the flow rate at which data is produced,
stored, and analyzed. In “data explosive era”, data is analyzed
and stored in real or near real time. The increasing number of
connected devices known as the Internet of Things (IoT), creates
additional challenges for real-time data analytics. Some industries
(e.g. telecommunications) have processed a high volume and limited
time interval data for years. However, with the horizontal scalability
of Big Data it becomes possible to handle such data efficiently.

• Variability: Variability refers to any change in data over time,
including the flow rate, the format, and the composition. The
collected data with different fields has a high probability of containing
incomplete information. These incomplete, uncertainty and diverse
data sources significantly influence the quality of data. Therefore,

5

Chapter 2. Background

data validation and provenance become an important step during
data processing to solve this problem [11].

• Value: The ability to understand and manage data sources and
integrate them into a larger data network can provide previously
unknown insights from data. The rise of Big Data is driven by
the rapid development of machine learning algorithms, data mining
techniques, and artificial intelligence. Moreover, it is motivated by a
process of analyzing the data, extracting information into knowledge
and action for desired values based on historical knowledge [10]. It
involves a process to use the machine learning algorithms to achieve
the value of data to make a business decision.

2.2 The Large-Scale Distributed Processing

Figure 2.2: Large-scale distributed data processing framework

The analysis of large volume of data using conventional methods is
exponentially expensive. The advent of horizontal scale [32] (adding more
machines) has reduced the cost for constructing systems to process massive
amounts of data. Large-scale data processing enables the use of different
types of data in a cloud to provide diverse analytic services (see Figure
2.2). A large-scale data processing platform serves as a framework for
both storing and processing of a large volume of data (batch and stream)
in a distributed environment.

6

2.3. Big Data Technologies

Big Data processing can be classified into two types: batch processing
and stream processing. A framework for Big Data processing and analytics
projects resembles that of a traditional business analytics projects. The key
difference is how the processing is executed in the Big Data environment. In
a traditional framework, analysis is performed with a business intelligence
tool on a stand-alone system. In Big Data, processing is executed across
multiple nodes.

The concept of distributed processing is not new. However, the avail-
ability and rapid growth of open-source platforms such as Hadoop and
Spark have encouraged many organizations to use Big Data analytics in
various domains. The challenge in their use is that Big Data tools are
incredibly complex and to utilize them successfully requires a variety of
skills.

Figure 2.2 shows detailed steps involved in Big Data processing and
analytics. Data acquisition is performed using various sources such as:
the Internet, cameras, mobile terminals, self-driving cars, social networks,
hospitals, smart homes, smart meters, and sensors. The collected data are
stored in a distributed file system such as HDFS. These data has to be
retrieved, processed and analyzed with various tools.

Data-intensive processing tools such as Spark and MapReduce are used
in conjunction along with machine-learning techniques to provide analytics
to end users. Additionally, the data warehouse method [57] is also used
whereby various data from an array sources are aggregated and processed.
Before processing, the data is cleaned and made ready for use by way of
ETL (extract, transform, and load). Structured and unstructured data is
processed via data-intensive tools [23, 20].

The next step is the analytics layer wherein machine learning, data
mining, and pattern recognition techniques are used to provide insights.
The value is presented in a report or the form of charts.

2.3 Big Data Technologies

The following subsections provide an overview of different technologies
used to conduct the research performed in the enclosed papers.

7

Chapter 2. Background

2.3.1 Hadoop

Hadoop 1 [21] is an open-source framework for distributed storage and
data-intensive processing, first developed by Yahoo! 2. It consisted of
two core projects: Hadoop Distributed File System (HDFS) [35] and
MapReduce programming model [41]. HDFS is a distributed file system
that splits and stores data on nodes throughout a cluster, with a number
of replicas. It provides an extremely reliable, fault-tolerant, consistent,
efficient and cost-effective way to store a large amount of data.

HDFS is designed to store large-scale data in terabytes in an efficient
way. It is based on Google file system (GFS) [48]. Each node in Hadoop
has namenodes and a cluster of datanodes to form the HDFS cluster.
Clients use RPC to communicate each other. HDFS stores large files
(64MB to 512MB chunks of a single logical file), across the cluster. It
mainly separates file’s metadata and application data.

NameNode
(Active)

NameNode
(StandBy)

Client

DataNode1 DataNode2 DataNode3 DataNode4

Client

Name=/home/foo/data
Replicas = 3

 Block Ops
Read

Metadata

Metadata

Write

Figure 2.3: Architecture of HDFS.

The NameNode is the master node on which the job tracker runs. It

1Hadoop; [http://hadoop.apache.org/]
2Yahoo! Developer Network, (2014), Hadoop at Yahoo!,

[http://developer.yahoo.com/hadoop/]

8

2.3. Big Data Technologies

contains the metadata (information about data blocks stored in DataNodes
- the location, size of the file, etc.). It maintains and manages the data
blocks, which are present on the DataNodes, where the actual data is stored.
The DataNode runs three main types of daemon: Read Block, Write Block,
and Write-Replicated Block. The NameNode and the DataNode maintain
their own logging format. Each node records events/activities related to
reading, writing, and the replication of HDFS data blocks. When a file is
written in HDFS, it is divided into blocks of a fixed size. The client first
contacts the NameNode, which gets the list of DataNodes where actual
data can be stored. The data blocks are distributed across the Hadoop
cluster. Figure 2.3 shows the architecture of the Hadoop cluster node used
for both computation and storage.

MapReduce is parallel programming model introduced by Google in
2004 that processes large data on clusters of computers. It has proven
to be very attractive for parallel processing of arbitrary data [41]. It
consists of two user-defined functions, Mapper and Reducer. The Mapper
processes input data splits in parallel through different map tasks and
then sends sorted, shuffled outputs to the Reducers that in turn group and
process them using a reduce task for each group. MapReduce manages
scheduling of the task across clusters, fault-tolerance, splitting the input
data managing communication between nodes.

Split 0

Split 1

Split 2

Map

Map

Map

Reduce
Ouput

file 1

Reduce
Ouput

file 1

OutputReduceShuffle
(Sort)

Map Intermediate
files

Input files

Reduce Worker

Reduce Worker

Map Worker

Map Worker

Map Worker

Figure 2.4: MapReduce simplified Flowchart.

A MapReduce program takes a set of key/value pairs as input and
produce a set of key/value pairs as output. It splits input file into inde-
pendent fixed-sized chunks called input splits. A set of key/value pairs

9

Chapter 2. Background

is read from each chunk of data. Each chunk of data is processed by the
mapper process in a distributed environment as shown in Figure 2.4. A
map function is user defined function, which reads key/value pairs from the
input file. A map function generates another intermediate key/value pairs.
This intermediate key/value pairs (output of map function) is written to
a local disk. The values obtained are associated with the intermediate key
and are grouped together by Mapper function. The reduce function then
merges the values and finally outputs a set of key/value pairs.

Hadoop framework reduces the cost of cluster construction by creating
clusters of inexpensive commodity hardware for distributed data storage
and processing. It provides an interface for organizations to extract, store
and analyze data in large scale. Hadoop can store an enormous amount of
data whenever and whatever form is needed, simply by adding more servers
(commodity machines with relatively less price) to an existing Hadoop
cluster. This makes data storage with Hadoop cheaper than traditional
methods.

2.3.2 HBase

HBase 3 [26] is a column-oriented and distributed database that uses HDFS
as its storage layer and is modeled after Google’s BigTable [40]. HBase
is NoSQL database that provides random read/write access in real-time
to large datasets [21]. In HBase, a table is physically divided into many
regions, which are in turn served by different Region Servers. One of its
uses is to combine real-time HBase queries with batch MapReduce jobs,
using HDFS as a shared storage platform. HBase table can integrate with
Hadoop to serve as a source or destination of MapReduce jobs.

2.3.3 OpenTSDB

OpenTSDB 4 is an open source, distributed and scalable time-series
database, developed by StumbleUpon. It supports a real-time collection
of data points from various sources. It is designed to handle terabytes
of data with high performance for different monitoring needs. It stores,
indexes and serves metrics at a large scale. Data is stored in HBase in
two different tables: the tsdb table provides storage and query support
over time-series data and the tsdb-uid table maintains an index of globally
unique values for all metrics and tags.

3Hbase; [https://hbase.apache.org/]
4OpenTSDB; [http://opentsdb.net/]

10

2.3. Big Data Technologies

2.3.4 R and RHIPE

R 5 [27] is a language and environment widely used among statisticians
and data scientists. It provides a wide range of libraries for analysis and
visualization. R Hadoop Integrated Processing Environment (RHIPE) 6 is
a library for integrating R with the Hadoop DFS. Using the MapReduce
programming model, RHIPE computes massive data sets across different
nodes within a cluster. It works from the R environment using standard
R programming idioms [16, 17].

2.3.5 Apache Spark

Apache Spark 7 is an open-source distributed framework that has recently
become popular for data analytics. Similar to Hadoop, it is fault-tolerant
and supports distributed computation systems to process fast and large
streams of data. It uses Hadoop distributed file system to store and
read data. It provides in-memory cluster computing that allows user to
load data into a cluster’s memory, which in turn makes it perform up
to 100 times faster than Hadoop MapReduce. Apache Spark introduced
the concept of Resilient Distributed Datasets (RDD) [22], which is a
distributed memory abstraction that allows in-memory computation on
large distributed clusters with high fault-tolerance. It enables efficient
data reuse that let users explicitly persist intermediate results in memory.
RDDs are a good fit for many parallel applications. RDDs is used in
iterative in-memory operations where data is read multiple times and
manipulated using a rich set of operators. [1].

2.3.6 Apache Kafka

Apache Kafka 8 [14] is publish-subscribe messaging also considered as
a distributed commit log. It is scalable, fast, distributed, durable and
offers high throughput [29]. Kafka contains feeds of messages in categories
called topics. The process that publishes messages are producers, and the
process that feeds published messages are consumers. Kafka consists of a
cluster comprised of one or more servers each of which is called a broker.
In Kafka, producers send messages over a network to the cluster which
serves to consumers as shown in Figure 2.5.

5R; [https://www.r-project.org/]
6RHIPE; [https://github.com/saptarshiguha/RHIPE]
7Apache Spark; [http://spark.apache.org/]
8http://kafka.apache.org/

11

Chapter 2. Background

Figure 2.5: Kafka Architecture

2.4 Data Science

The National Institute of Standards and Technology define Data Science as
“extraction of actionable knowledge directly from data through a process
of discovery, or hypothesis formulation and hypothesis testing” [8]. Data
Science is emerging as the fourth paradigm of science [37].

Data science is an interdisciplinary area which extracts knowledge or
insights from data in various forms using algorithms from different fields
like statistics, machine learning, data mining, and predictive analytics.

The explosion of data production, storage capabilities, computational
capacity, and cloud technologies make data science a critical component
in high-growth economic sectors such as healthcare, industrial production,
retail, banking, government, and others.

2.5 Machine Learning

Machine learning is a collection of techniques that iteratively learns from
data to complete a task, or to make accurate predictions. It uses set of
computer algorithms and observations of data for learning. In general,
machine learning enables a computer to improve future performance by
learning from historical experience.

There are many real examples where machine learning is effective:

• spam filtering: identify email messages as spam or non-spam.

12

2.5. Machine Learning

Figure 2.6: Definition of Data Science [8]

• face and image detection: find faces in images.

• recommendation’s engine: suggestions based on data points from
past selections (Amazon and Netflix).

• fraud detection: identify credit card transactions.

• weather prediction: predict whether it will rain tomorrow or not?

• medical diagnosis: diagnose a patient whether it suffers from a
disease or not.

• optical character recognition: categorize images of handwritten
characters.

With the advent of Big Data, collection of data is so large and complex
that it is difficult to process with using traditional methods and models.
As a result, some traditional statistical methods and signal processing
techniques are unsuitable to satisfy the requirements of complex event
processing and storage for Big Data. Thus, this needs to explore ma-
chine learning techniques with the power of data-intensive computing and
distributed storage to analyze large-scale data.

13

Chapter 2. Background

The data are steadily growing in size. And the additional data help to
train the model to achieve high accuracy even with simple algorithm [56].
There is one of the most famous quotes by Peter Norvig claiming that “We
don’t have better algorithms. We just have more data.” [36]. The effect
that Norvig et. al proposed in their paper was already captured years
before on natural language processing with different machine learning
algorithms in a famous paper by Microsoft [51]. The simple algorithm
can achieve higher accuracy with large sample size. This paper addresses
the problem on sentence disambiguation. For example, the relationship
between two variables is linear - the number of pages viewed on a website
and percent unique visitors on a website. Having more data points would
improve the accuracy and confident estimation of two variables. Therefore,
applying machine learning algorithms on a large amount of data requires
Big Data tools for storing and processing.

The following subsections provide an overview of the different machine
learning techniques used for various experiments performed in the enclosed
papers.

2.5.1 Hidden Markov Models

HMM [63] is based on Markov Models, a tool for representing probability
distributions over sequences of observations. It is a probabilistic model, in
which system is assumed to be a Markov process [65] (memoryless process)
with hidden (unobserved) states. HMM consists of unobserved states, and
each state is not directly visible, but output and dependent on the state
are visible. It has a set of states each of which has a number of transitions
and emissions state probability as shown in Figure 2.7. HMM typically
used to solve three types of problem: detection or diagnostic problem,
decoding problem and learning problem. Forward-backward algorithm [45]
solves diagnostic problem. Similarly, Viterbi algorithm [64] solves decoding
problems and Baum-Welch algorithm [61] solves learning problem.

2.5.2 Robust PCA (Principal Component Analysis)

PCA is a linear transformation that maps a given set of data points into new
axis (i.e. principal components). It is used in the dimensional reduction
technique. In the classical PCA, the eigenvectors and eigenvalues [62] are
calculated from the sample covariance matrix using Euclidean distances
between sample data points [46]. In RPCA, robust covariance estimation
is used for eigen decompositions. The decomposition of a low-rank matrix

14

2.5. Machine Learning

Figure 2.7: Hidden Markov Model.

from a set of observations with gross sparse errors is known as robust
principal component analysis (RPCA) [24]. The robust PCs represent the
data effectively in a lower-dimensional space. The anomalies are detected in
this lower-dimensional space using distance measured; orthogonal distance,
which is the distance of an observation to the PCA space. It has many
applications in computer vision, image processing, and data ranking. In
addition, if the observed data has been contaminated by a dense noise in
addition to gross sparse errors, RPCA is used to get a low-rank matrix.

2.5.3 Ensemble

Ensemble methods combine a diverse set of individual models merged
together to improvise on stability and predictive power [34]. Ensemble
methods use learning algorithms to construct a set of classifiers and then
classify new data points by taking an average weight of their predictions
accuracy [54]. Ensemble techniques can provide high accuracy, but in
some cases they over-fit the training data more than a single model.

2.5.4 FM (Factorization Machines)

Factorization machines are a new model class that combines the advantages
of Support Vector Machines (SVM) [58] with factorization models. Steffen
Rendle [19] introduced this model in 2010. This model exhibits similar
properties of SVM. But FM is used as general prediction tasks. Like
other models, non-linear SVMs or decision trees, FM includes interactions
between predictor variables. For example, FMs can learn that young users
prefer to access data from mobile devices, whereas of older users prefer a
desktop enviroment.

15

Chapter 2. Background

2.5.5 Random Forest

Random Forest is an ensemble learning method operated by construct-
ing a multitude of decision trees at training time for classification and
regression [52]. Random Forests grow many classification trees. To classify
a new target from an input vector, each vector is added down the trees
in the forest. Each tree gives a classification and all trees votes for that
particular class. The forest chooses the classification having the most votes.
For example; in a case of movie recommendation, Netflix recommends you
a set of the movie whenever you want to watch a movie. To figure out best
recommendation, Netflix creates a set of questions like “Is X a romantic
movie?”, “Does Johnny Depp star in X?”, and so on. It figures out a bunch
of informative question first and gives a yes/no answer at the end. This
process created a labeled training set. Moreover, it will look into other
users data based on that it will build an ensemble classifier, (a forest).

2.5.6 TF-IDF

TF-IDF stands for term frequency-inverse document frequency, and it is a
weighting scheme often used in information retrieval and text mining [55].
This weight specifies how important a word is to a given document in the
overall collection. The importance of word increases proportionally to the
number of times it appears in the document. The objective of TF-IDF is
to model each document into a vector space, without caring much about
ordering of the words in the document. It is composed of two terms: (i)
Term Frequency (TF), which is the number of occurence of a word appears
in a document, denoted in Equation 2.1 (ii) Inverse Document Frequency
(IDF), is the logarithm of the number of documents in the corpus divided
by the number of documents where the term ti appears in, denoted in
Equation 2.2 [38]. TF-IDF are often used by search engines for page
ranking. For example, consider a document of 50 words wherein the word
data appears 5 times. The term frequency (i.e., tf) for data is then (5 /
50) = 0.1. Now, assume corpus of documents is 10 million and the word
data appears in 1000. Then, the IDF is log(10, 000, 000/1, 000) = 4. Thus,
the TF-IDF is the product of tf ∗ idf : 0.1 * 4 = 0.4.

TF (t) =
Number of term t appears in a document

Total number of terms
(2.1)

IDF (t) = loge(
Total number of documents

Number of documents with term t in it
) (2.2)

16

2.5. Machine Learning

2.5.7 Naive Bayes

Naive Bayes is a classifier that is based on the popular Bayes’ probability
theorem. They are known for creating simple yet well-performing models,
especially in the area of document classification [53]. Naive Bayes classifier
is scalable and very efficient for large datasets since it is less computation-
ally intensive (CPU and memory) [49]. Moreover, it requires less training
data and training time.

2.5.8 K-nearest neighbors

K-nearest neighbors are one of the simplest algorithms that classify new
classes based on distance functions (e.g., Manhattan, Euclidean, Minkowski,
and Hamming) [39]. K-NN has been widely used as a non-parametric
technique used in statistical estimation and pattern recognition since the
1970’s. In most basic term it assigns label of its nearest neighbor to an
observation. The label is assign by calculating distance between paris of
observations.

The problem with nearest neighbor classification is that the estimation
can be nosiy if the data is nosiy or has irrelevant features [42]. For example,
if a spam email is labeled as nonspam then all emails which are similar
to this email will classified as nonspam. However, it can yield excellent
performance when used in proper and with a good distance functions. For
example, the winnder of Netflix progress prize [44] was essentially based
on nearest neighbours based.

2.5.9 XGBoost

XGBoost is “Extreme Gradient Boosting” [6] [4]. Usually, it is similar to
Random Forest with multiple trees in series. It uses the combination of a
tree that is so-called tree ensemble model, and that sums the production
of multiple trees together. In Gradient Boosting, the error of one tree is
adjusted to another, using parameter gradient to offer a better prediction
for the new tree. XGBoost is primarily a tree ensemble model.

2.5.10 Neural Network

A neural network [50], is a network of interconnected processing elements
(neurons) that work in unison to solve a particular problem. They have
been inspired by the way a biological nervous system works and processes
information. The goal of the neural network is to solve problems in the

17

Chapter 2. Background

same way that human brain would solve. Neural networks are typically
consist of large number of highly interconnected processing elements
(neurones) working in parallel to solve a specific problem.

2.5.11 Feature Engineering

Feature engineering is the process of creating features that make machine
learning more accurate and efficient using domain knowledge of the data.
It is an important step of data preparation process, where new and
meaningful variables take place. Feature Engineering can drastically affect
the performance and accuracy of a model. In some cases, it reduces feature
space by ignoring some useless features, thus reducing overall training
time. Some of the common techniques for feature engineering are discussed
below:

• Data Standardization: There might be an issue if the distributions of
different features are radically different. It is solved by transforming
the data toward zero mean and unit variance [59].

• Data Normalization: It is the process of scaling individual samples
to have unit norm. It is done similarly as standardization process,
moving the data toward zero mean and unit variance.

• Encoding categorical features: Turning categorical variables to a fixed-
length vector. This step is also known as One Hot Encoding [18].

• Feature Binarization: Converting numerical features to get boolean
values.

• Feature Discretization: Converting continuous features to discrete
features. Typically, data is sampled into partitions of equal inter-
vals [60].

• Feature Regularization: It is a technique used to solve the overfitting
problem in machine learning algorithms [47].

• Missing Data: This is a reality that everybody has to reckon with.
The missing data can be replaced with mean, median or sometimes
it is useful to ignore it.

2.6 Cloud Computing

The National Institute of Standards and Technology (NIST) describes cloud
computing as “a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources

18

2.6. Cloud Computing

(e.g., networks, servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal management effort or service
provider interaction” [30].

The development of cloud computing has resulted in a large migration
of individuals and organizations into cloud storage systems. Motivated
by benefits such as shared services, storage, and computation, among
a massive number of users, today enterprise applications both generate
and require to handle huge volumes of data on a regular basis. This is
appropriately referred to as data intensive computing. Cloud computing
allows users to focus on renting and scaling services for an optimal resource
utilization.

The core concept of cloud computing is based on five essential charac-
teristics: (i) On-demand self-service: enable a consumer to automatically
and independently provision computing and storage capabilities according
to their needs. (ii) Broad network access capabilities: allow users to
access data from anywhere and on any device (mobile, tablets, laptops,
and workstations). (iii) Cloud provider resource pools: serve mul tiple
consumers, with different physical and virtual resources dynamically allo-
cating according to consumer demand. (iv) The storage and computing
capability can be elastically provisioned to scale rapidly outward and
inward commensurate with demand. (v) A metering capability allow users
to control and optimized resource automatically. Resource usage can be
monitored and controlled, to provide transparency for both the cloud user
and provider.

Figure 2.8: Cloud Computing Architecture [7].

19

Chapter 2. Background

Cloud computing is categorized into three different services as shown in
Figure 2.8, and provide the following functionalities:

• Infrastructure as a Service (IaaS): Cloud vendor provides re-
sources with minimum support, with raw storage and computing
resources (i.e., close to the bare hardware). A typical example of IaaS
cloud is Amazon Elastic Compute Cloud (EC2) 9. Cloud vendors
allocate their large storage and compute capability as demanded by
users to provide ad-hoc virtual environments [43].

• Platform as a Service (PaaS): It allow users to create, run, and
manage a set of applications without the complexity of managing or
building underlying cloud infrastructure including storage, network,
servers, operating systems, or storage. However, the user has freedom
to deployed applications and configure the application for hosting
environment. The most common examples of PaaS cloud are the
Google Apps Engine 10 and Microsoft Azure 11.

• Software as a Service (SaaS): User, can use cloud applications
running on a cloud infrastructure. Cloud vendor can host their
services and provide online, most commonly through APIs and web-
browser interfaces. The main advantages of this model are that
it frees the user from any administrative management, software
installation, and updating. Some general examples for this model
are the Google Docs 12 and Microsoft Office 365 13 tools.

Cloud computing can be deployed in several ways. A Private Cloud
is a cloud model that is exclusively used by a single organization. It
may be owned and managed by the organization, owned and manage
by a third party, or may be a combination of both. A Public Cloud is
a deployment model where a service is owned, managed and operated
by an organization that makes the cloud available for open use by the
general public. A Community Cloud provides services for exclusive use
by a particular community that have shared concerns. A Hybrid Cloud
is an integration of two or more distinct cloud entities that are bound

9Amazon Web Services: http://aws.amazon.com/
10Google Apps Engine; https://cloud.google.com/
11Microsoft Azure; http://azure.microsoft.com/en-us/
12Google Docs; https://docs.google.com/
13Microsoft Office 365; https://products.office.com/en/office-365-home

20

2.6. Cloud Computing

together for data and application portability (e.g., a transactional order
entry system which when demand is high).

Cloud computing provides compute and storage resource that can be
acquired on a “pay per use” basis. Typically, it requires no expenses to
buy hardware/software upfront, thus cloud consumer can use operating
expense budgets (OPEX) to fullfill their requirements, giving them plenty
of budgeting flexibility [31]. The alternative approach is to invest in
hardware and software, thus capitalizing assets (CAPEX) [5]. For example;
If you need a car only for a week, you can rent it for a week. You only
pay for the week that you used for and not needed to invest in purchasing
the car. In an OPEX model, the maintenance expenses is built into
“as-a-Service” cost.

21

Chapter 3

Contributions

This dissertation proposes an extension to cloud-based Big Data framework
that provide a scalable, efficient, and accurate approach to improve the
performance of data center by predicting failures and detecting anomalies.

This dissertation addresses these needs and proposes solutions (like a
distributed scalable analytics framework) that enrich the cloud platform
and enable high-performance processing on a large scale. The contribution
of this dissertation is demonstrated by applying state-of-the-art processing
framework and consequently improving data center overall performance
by predicting failures and detecting anomalies. The framework enables
Big Data applications to gain an advantage using cloud computing such
as scalability and elasticity.

The contribution of this dissertation is scalable anomaly detection
and failure prediction for a Big Data cloud platform to increase the
performance of data centers. These techniques are based on a scalable
machine learning algorithms to provide extensions to cloud-based Big Data
framework. Moreover, this dissertation provides a state-of-art solution
to permanently delete data stored by Big Data applications. Figure 3.1
shows the research outline of this dissertation. The research is divided into
four different areas: security, storage, processing, and analytics. Paper
III, describes a supporting tool that provides secure deletion of the data
collected during the analytic step, which is described in the remaining four
papers (papers I, II, and IV). Paper I, provides a processing and storage
framework for large-scale data generated in the cloud. Papers II, IV, and
V deal with distributed processing and scalable analytics to improve the
efficiency and performance of a data center. In particular, papers V and
VI provide machine learning techniques to improve the effectiveness of

23

Chapter 3. Contributions

the classification algorithm. Papers II and IV present scalable machine
learning techniques to improve the performance of data centers.

Processing

SecurityStorage

Analytics

Paper 2,4,5,6: Failure Prediction,

Anomaly Detection, User

Identification, Activities Classification

Paper 1,2,4: R2Time, Failure

Prediction, Anomaly Detection

Paper 1: R2Time

Paper 3: SD-HDFS

Figure 3.1: contribution of papers

Summary of the papers contribution are listed below.
Paper I proposes an efficient distributed computing framework: R2Time

to process the time-series data in the Hadoop environment. R2Time allows
R users to interact directly with OpenTSDB data and perform statistical
analysis using the MapReduce programming model. R2Time allows ana-
lysts to work on massive datasets within a popular, well supported, and
powerful analysis environment.

Paper II introduces a novel algorithm for failure prediction, using the
MapReduce programming framework, for improved scalability and failure
prediction probability. It accomplishes this by predicting the failure of
jobs and computing nodes, which also boosts the performance of the data
center.

Paper III 1 introduces an approach for data deletion that solves data
leakage in HDFS that can be caused by node failure and data sniffing
using forensic tools. The application of an additional component called
checkerNode ensures that all blocks are deleted. In the case where it is
impossible to delete a block, the component provides detailed reports of
hardware components that might contain sensitive data. The deletion
process is extended by physically locating each copy of the block and
overwriting it to prevent data spillage using forensic tools.

Papers IV proposes an automated, self-adaptive, anomaly-detection
technique in a distributed environment. It uses Spark as a framework to

1This research was conducted at Purdue University.

24

3.1. Research Questions

detect anomalies in the cloud infrastructure. An adaptive algorithm is
introduced, which uses reconstruction errors to determine the sample size
and update the threshold value.

Papers V and VI demonstrate “analytics as a Service” on different data
sets obtained from Drawbridge devices and smart homes. Using machine
learning techniques such as FFM to identify the user across cross-devices,
as well as ensemble learning to classify activities in the smart home.

3.1 Research Questions

This dissertation contributes the following research questions:

(1) How to store and process large amounts of data from cloud monitor-
ing logs effectively and efficiently?

(2) How to improve data center efficiency, performance, transparency,
and availability?

(3) How to improve the accuracy of operations such as, failure detection,
anomaly detecton, activity classification, and user identification
using machine learning techniques?

P
a
p
e
r 3

: S
e
c
u
re

 D
e
le
tio

n

Paper 1: R2Time (Data Processing and Analytic Framework)

RQ1

Paper 4: Anomaly DetectionPaper 2: Preidicting Failure

Paper 5: User Identification

RQ2

Paper 6: Activities Classification

RQ2

RQ2

RQ3

Figure 3.2: Contextual relationship between papers.

Figure 3.2 demonstrates the contextual relationship between different
research questions and the respective papers included in this dissertation.

25

Chapter 3. Contributions

D
at
a
S
tr
ea

m
s

B
at
ch

D
at
ac

en
te
r
pr
o
vi
de

r
B

C
lo
ud

 In
fr
as

tr
uc

tu
re

D
at
ac

en
te
r
pr
o
vi
de

r
A

A
n
a
ly
ti
c
 L
a
y
e
r

N
o
S
Q
L

da
ta
ba

se
s

D
at
a
S
to
ra
ge

 L
ay

er

D
at
a
P
ro
ce

ss
in
g
La

ye
r

D
at
a
In
ge

st
io
n

La
ye

r

K
af
ka

B
ig
 D
a
ta
 P
ro
c
e
s
s
in
g
 F
ra
m
e
w
o
rk

A
p
p
lic
a
ti
o
n
 L
a
y
e
r

F
ai
lu
re
 p
re
di
ct
io
n

A
no

m
al
y
de

te
ct
io
n

A
ct
iv
it
ie
s
cl
as

si
fi
ca

ti
o
n

U
se

r
id
en

ti
fi
ca

ti
o
n

M
ac

hi
ne

 le
ar
ni
ng

P
at
te
rn

R
ec

o
gn

it
io
n

D
at
a
M
in
in
g

P
C
A

H
M
M

F
F
M

X
G
B
o
o
s
t

R
F

D
T

R
e
s
o
u
rc
e
 M
a
n
a
g
e
m
e
n
t
L
a
y
e
r

Security Layer
Data Governance Secure Deletion

F
ig
u
re

3
.3
:

H
ig

h
-l

ev
el

a
rc

h
it

ec
tu

re
o
f

B
ig

D
a
ta

ec
o
sy

st
em

u
se

d
in

th
is

d
is

se
rt

a
ti

o
n
.

26

3.2. Overview

3.2 Overview

A scalable framework for processing data from the data center and IoT
devices is needed. Figure 3.3 demonstrates the Big Data ecosystem high-
level architecture that is used during the research for this dissertation.
The work is categorized into five layers: Application, Analytic, Processing,
Resource, and Security.

3.2.1 Application Layer

This layer provides business insights derived from the analytic layer. It
establishes that the insights gleaned through the analysis layer are provided
to the user who can take action to make decisions. This layer provides
results in the form of reports, charts, figures and key recommendations.
The outcome of the analysis is important for various users within the
organization as well as entities such as customers, vendors, partners, and
suppliers. The insights can be used for various purposes such as product-
targeting of customers and delivery of personalized offers. Correlating
insights can also be used to target fraud in real-time. Indeed, a customer
can be notified as soon as a fraudulent transaction occurs so that corrective
actions can be taken immediately.

The application layer provides a visual interface to the user in the form
of dashboards, charts, or reports that allow stakeholders and customers
to make correct decisions and to design appropriate reparative strategies.
Papers II, IV, V and VI describe an interface for a user to obtain analytic
reports in the form of charts. Papers II and IV describe a pro-active
measure through push notification for end users.

3.2.2 Analytic Layer

Stored data needs to be processed and analyzed to extract it’s value. The
most common approach is to use MapReduce and Spark for distributed
processing. In this approach, the data elements are selected for analysis
and modified to a format from which their value can be derived.

Paper II, discusses a framework for detecting failure in large systems.
Failures in a large system can and will happen at various levels. Examples
include network/bandwidth issues, disk failures, and node failure. A large
platform should be able to recover from all these failures and be capable
to resume from the last successful state without distorting the result.
Moreover, it is preferable to employ a system that can predict failure

27

Chapter 3. Contributions

before it happens. In this paper, we propose a Hidden Markov Model,
which is executed on top of MapReduce. This model is trained by using
the prior failure record of the system. Looking at the failure pattern, our
model can predict when and how future failure is likely to happen.

Paper IV, provide proactive anomaly detection that enhances the per-
formance of a cloud platform. It uses a combination of SVD and RPCA
beneath machine learning techniques. Papers V and VI, provide user iden-
tification and activity classification by using machine learning techniques
like FFM and an ensemble model.

3.2.3 Big Data Processing Layer

A big data processing framework is often referred to as “software middle-
ware”. It helps a distributed computing environment to store and analyze
large-scale data. This is done by processing, analyzing, and visualizing
the data, as described in papers I, II, and IV. The framwework consists of
three main components:

• Accepting real-time and batch data. Data ingestion acquires data
from sources such as sensors, online services, email archives, sales
records, social media channels, and log files.

• Data processing. This is another important aspect for Big Data
management. Data processing consists of a scalable distributed
environment, which can process stream/batch data. It consists
of a framework like MapReduce 2 and Spark 3, which is used for
data-intensive computing.

• Data storage. As the volume of data generated and stored by devices
explodes, traditional systems have become inconvenient. Big Data
tools such as Hadoop Distributed File System (HDFS) have emerged
as an effective alternative to older systems. Consisting of a NoSQL
database to store the data and intermediate results, the data can be
stored in a distributed file system such as HDFS. A database system
is needed that can organize and categorize the data in a way that
people can understand. Hadoop has it own NoSQL known as HBase 4,

2http://wiki.apache.org/Hadoop/MapReduce
3http://spark.apache.org/
4https://hbase.apache.org/

28

3.2. Overview

but there are others like Amazon’s DynamoDB 5, MongoDB 6 and
Casandra 7.

Paper I is a framework that consists of three Big Data components. It
proposes a framework called R2Time to enable distributed processing of
large time-series data across a Hadoop cluster from the R environment.
The R2Time framework allows a data scientist to work on the data collected
from sensors using a standard processing scheme. It also efficiently stores
time-series data by using OpenTSDB in a cost-effective way. Furthermore,
papers II, IV, and V use the Big Data processing framework to predict
failure and detect anomalous behavior in a data center.

3.2.4 Infrastructure Layer

This layer provides a horizontal scaling infrastructure for efficient large-
scale data storage and processing. It also enables users to access virtual
machines to store, and analyze Big Data. This layer acts as a major data
source and computing done in this dissertation. Hadoop cluster data and
cloud platform workload were generated by various applications running
in the cloud platform.

3.2.5 Security Layer

Data privacy associated with Big Data collection is a significant challenge.
Real time processing of large data complicates real-time synchronization.
Conversely, demands for data privacy system architecture and computing
power. Infrastructures that process large-scale data is gigantic and because
traditional computation methods and security were designed for small
scale data, these methods became inadequate to meet the demands of
managing Big Data.

Billions of users leave data footprints when they access social networks,
search engines, and networked websites. Extracting data and processing of
data footprints can cause privacy problems. During real-time processing,
finding a method to maintain data security and to accelerate processing
speed is a critical issue for a Big Data framework.

Paper III, provides a tool for securely deleting data from a distributed
file system. Storing data in a large distributed system can lead to data

5https://aws.amazon.com/documentation/dynamodb/
6https://www.mongodb.com/
7http://cassandra.apache.org/

29

Chapter 3. Contributions

leakage in two ways: undeleted blocks due to node failure and data sniffing
using forensic tools. The SD-HDFS tool provides an improved deletion
technique in HDFS. The use of additional components called checkerNode
ensures that all blocks are deleted. In cases where it is impossible to delete
data, the checkerNode component provides detailed reports on hardware
that might contain sensitive data. Furthermore, we extend the deletion
process by physically locating each copy of the block and overwriting it to
prevent data spillage using forensic tools.

In future work, a tool for providing data governance needs to be de-
veloped using Apache NiFi 8. Governed data are more reliable, secure,
and ready to use, while data from an ungoverned has little value for
analytics and business operations. Data governance provides a framework
to set policies and implement controls designed to ensure that information
remains accurate, consistent, and accessible.

Summarize the main contributions of the paper:

3.3 Paper I: R2Time: A framework to analyse
OpenTSDB timeseries data in HBase.

This paper was published in the proceedings of 2014 IEEE 6th International
Conference on Cloud Computing Technology and Science (CloudCom).

Motivation:

The volume of generated time series data continues to grow exponentially
and demands the analysis of massive time-series datasets produced by
sensor networks, power grids, stock exchanges, social networks and cloud
monitoring logs. Big Data storage and processing frameworks provide
the capability to manage the volume, velocity and frequency attributes
associated with time-series data. Though OpenTSDB provides a platform
to store time-series data, it has limited functionality to perform complex
analytical functions like regression, correlation, and ARIMA. To solve this
problem, a tool is developed that can perform sophisticated analytics in a
scalable and distributed environment.

8https://nifi.apache.org/

30

3.4. Paper II: Analyzing and Predicting Failure in Hadoop Clusters Using Distributed

HMM.

Method:

In this paper, we develop a bridge between HBase and R to enable data-
intensive computing. A composite row key is constructed using a start and
end date provided by the user. HBase scans the data from region servers
using row keys. The analytic user program written in R is executed using
a Mapper and Reducer function of the MapReduce paradigm.

Results and Conclusions

The basic statistical and classifier functions were tested in the framework.
They appear to be supra-linear in nature. This is due to the algorithm
being scaled using the MapReduce paradigm. Moreover, the read latency in
HBase is higher because of its log-structure based storage. Read latency in
HBase can be optimized through compaction. The load is well distributed
across a large number of nodes to improve performance. R2Time has
improved execution time compared to OpenTSDB. R2Time performs by
almost 50% better with two nodes clusters in comparison with OpenTSDB.

3.4 Paper II: Analyzing and Predicting Failure
in Hadoop Clusters Using Distributed HMM.

This paper was published in the proceedings of 2015 6th International
Conference on Cloud Computing and Big Data in Asia.

Motivation:

The enormous amount of data obtained from sources like sensor networks,
power grids, stock exchanges, social networks, and cloud monitoring logs
must be stored and processed. Hadoop, a pioneer in Big Data processing
and storage provides this capability. Many enterprises and organizations
use the Hadoop cluster to store and process Big Data. The prime objective
of the Hadoop cluster is to maximize processing performance by employing
data-intensive computing. The Hadoop cluster consists of several nodes,
and failure in any node can result in higher execution time. However, if the
prediction of a failure node and job type can be analyzed, the performance
of the cluster can be improved.

31

Chapter 3. Contributions

Method:

In this paper, Hidden Markov Models (HMMs) are used to learn the
characteristics of log messages and use them to predict failures. The
model is based on a stochastic process with a failure probability of the
previous state. Because the faults are unknown and cannot be measured,
they produce error messages during their detection (i.e. present in log
files). Our prediction model is divided into four main parts: First, the
identification of error sequences and differentiating types of errors from
the log files. Second, the usage of the clustering algorithm. The labeled
training data are used to evaluate a maximum likelihood sequence that
is used to update the parameters for our model. Last, the prediction of
system failure through the observation of an error sequences.

The main idea of our approach is to predict failures by analyzing
error event patterns that imitates failure. Each error event consists of
a timestamp, error ID, and error type, which determine the type of
errors. Both failure and non-failure information are extracted from error
sequences to create a transition matrix. The observation symbols O1 =
{e1, e2, e3, e4, e5, e6} are referred to error events of the system, and failures
are represented as hidden state of HMM.

Results and Conclusion:

Because failures in the cluster systems are more prevalent, the ability
to predict failures is becoming a critical need. To address this need, we
collected Hadoop logs from a Hadoop cluster and developed our algorithm
on the log messages. The messages in the logs contain both error and non-
error information. The messages in the log were represented using error
IDs that indicate message criticality. The different types of error messages
(operational, software, resource errors) were classified. Six different types of
errors were detected on different DataNodes: network connection, memory
overflow, security setting, unkown, Java I/O error, and NameNode failure.
Based on error sequences in the observation state in HHM, the model was
trained. Training of the model was done using past observation. Viterbi’s
algorithm performs the prediction of the hidden state. Experimental
results using Hadoop log files provide an accuracy of 91% and F-measure
of 92% for two days prediction time. These results indicate that it is useful
to use the HMM method together with MapReduce to predict failure.

32

3.5. Paper III: Secure Deletion in Hadoop Distributed File System.

3.5 Paper III: Secure Deletion in Hadoop Dis-
tributed File System.

This paper was published in the proceedings of 2016 IEEE, International
Congress on Big Data (BigData Congress).

Motivation:

Data stored in a large Hadoop cluster does not provide transparency to the
user. When a user uploads the data to HDFS, the underlying storage layers
essentially keep the data immutable, only allowing concurrent appends.
HDFS does not support in-place updates. Many applications that are
write-intensive and require file modifications need to overwrite all file
content, even if very few changes were made. Therefore, changing any
file content requires the recreation of entire data blocks, which effectively
increases the overall write and update performance of the system.

Method

A secure deletion framework propagates file information to the block
management layer via an auxiliary communication path, so that file
deletion can be honored throughout the data path. A checkerNode is
added in the HDFS environment, which receives summary reports from
the DataNodes and compares the block stored in the DataNodes with
metadata in the NameNode. A file in HDFS is divided into a chunk of
blocks stored in the file system. The data content of a file is deleted via
its truncate function which involves updating the inode to set the file size
to zero. Multiple rounds of truncation are suggested for secure deletion of
content.

Results and Conclusion:

Several test scenarios allow to strategically track undeleted data within
HDFS to investigate vulnerability and risk assessment. Data consistency
test, where undeleting was monitored by CheckerNode, were deleted
automatically. During the secure deletion test, the default delete operation
in HDFS was tracked using the autopsy tool. It was later verified that
the overwrite technique successfully prevents recovery of deleted data. In
addition, the new framework allows Hadoop to integrate more easily into
an existing high-performance computing environment.

33

Chapter 3. Contributions

3.6 Paper IV: Adaptive Anomaly Detection in
Cloud using Robust and Scalable Principal
Component Analysis.

Submitted to Concurrency and Computation: Practice and Experience
and is under review. It is an extended version of the paper published in
the proceedings of 2016, 15th International Symposium of Parallel and
Distributed Computing (ISPDC2016).

Motivation:

Cloud computing has become increasingly popular, which has led many
individuals and organizations towards cloud storage systems. This move is
motivated by benefits such as shared storage, computation and, transpar-
ent service among a massive number of users. However, Cloud computing
system requires maintaining complex and large-scale system that inherent
various runtime problems caused by hardware and software faults. urrent
data centers consist of thousands of virtual machines, which require dy-
namic resource scheduling to operate both efficiently and cost-effectively.
These data centers need to meet the varying demands for different resources
like CPU and memory, and the scheduler must allocate or re-allocate these
resources dynamically. This necessitates monitoring of resource utilization
to detect any abnormal behavior.

Method:

The data from cloudwatch is collected and stored in OpenTSDB in a
near real-time. Different instances of Amazon EC2 services with various
geo-location are created, and thousand of a different user application are
simulated on those instances. Amazon CloudWatch collect all the server
metrics and send to OpenTSDB. The data is loaded into the RSPCA
model which detect an unusual pattern and alert the user. In this paper,
we propose an adaptive anomaly detection mechanism which investigates
principal components of the performance metrics. It transforms the perfor-
mance metrics into a low-rank matrix and then calculates the orthogonal
distance using the Robust PCA algorithm. The proposed model updates
itself recursively learning and adjusting the new threshold value to mini-
mize reconstruction errors. A predefined threshold δ is used to determine
an update operation. A matrix decomposition algorithm decomposes the
input matrix X into a sum of three parts X = L+ S + E using Robust

34

3.7. Paper V: AFFM:Auto Feature Engineering in FFM for Predictive Analytics.

Principal Component Pursuit. The low-rank matrix L is calculated using
the SVD of X using a threshold as singular values.

Results and Conclusion:

This paper presents a real-time adaptive anomaly detection technique
in cloud infrastructure. Different the performance metrics from Amazon
CloudWatch logs is collected and normalized. Fast Fourier Transformation
is used to detect a trend in input time series and convert the time series
into a matrix. This paper presents a self-adaptive threshold approach is
used. The threshold is updated during a learning phase. RPCA uses an
efficient approach to decompose into low-rank representation using Spark
as the underlying framework. The test was performed on different datasets
and with different algorithms such as SVM, DBSCAN, and Increment
PCA. It shows that RSPCA performs more accurately. RSPCA uses
an efficient approach to decompose data into a low-rank representation
using Spark. This model achieves an accuracy of 87.24% with real-time
monitoring.

3.7 Paper V: AFFM:Auto Feature Engineering
in FFM for Predictive Analytics.

This paper was published in the proceedings of 2015 IEEE, International
Conference on Data Mining Workshop (ICDM).

Motivation:

Users are employing many devices to complete online tasks or browse the
Internet. For example, a user wants to plan a holiday trip: and reads a
travel blog, books flight tickets, searches for a preferred restaurant, or
downloads a travel book. The user completes these tasks using a variety
of devices. As users move across the devices to complete their online
tasks, their identity becomes fragmented. The ads, recommendations, and
messages are not always able to determine whether activities on a specific
device are tied to the same or a different user. A model is required that
can predict user behavior as they switch between their respective devices
(websites/mobile apps).

35

Chapter 3. Contributions

Method:

Learning with the FFM model is improved by interacting with the property
feature, which is updated once for each unique property. For large-scale
datasets, where the properties of a field are massive, learning rates tend
to be slow. Our approach solves this by dividing the learning rate by the
number of features in the opposite field. This approach fits the training
data with extreme precision. Another key challenge is to overwhelm
the over-fit that occurs when small weights are adding up. In this case,
Regularization is needed to reduce the impact of the lower weights.

Result and Conclusion:

This paper presents an FFM model with auto feature-engineering capability.
The model can be used on any datasets with inbuilt options to calculate
features in the field to reduce learning time. The prediction accuracy for
user identification across devices is 86.48%.

3.8 Paper VI: Enrichment of Machine Learning
based Activity Classification in Smart Homes
using Ensemble Learning.

This paper was accepted to the proceedings of 2016, ACM 3rd International
Workshop on Smart City Clouds: Technologies, Systems, and Applications
(SCCTSA).

Motivation:

The data from various Internet-Of-Things (IOT) enabled sensors in smart
homes provide an opportunity to develop predictive models that offer
actionable insights in the form of preventive care to the resident of a smart
home. Applying machine learning on such data allows the detection of
patterns and activities that enable preventive care. Behavior patterns
that lead to preventive care constitute a series of activities. Behavior
classification can lead to preventive care in Aging-In-Place (AIP) by
accurate labeling of the activities done inside the house. The accurate
classification of activities can help detect whether the user is eating,
sleeping, standing, or jumping.

36

3.8. Paper VI: Enrichment of Machine Learning based Activity Classification in Smart

Homes using Ensemble Learning.

Method:

An ensemble model is used with a combination of Random Forest, KNN,
and XGBoost to classify activities in smart homes. In ensemble methods,
different models are combined to produce a more precise and robust model.
The most common approach uses either the average or weighted average
of each model.

To evaluate the accuracy of activity recognition in smart homes, an
ensemble model with a 2 level ensemble is created. In a level-2 step,
20 XGBoost runs are used to achieve better accuracy. The input data
consists of 100 different features that combine the data of 3 sensors:
accelerometer, video, and environment. Additionally, other features such
as mean, standard deviation, minimum, median, and maximum values of
the sensors are also extracted. The normalization of data between 0 and 1
is performed with a standardization technique. The output of the different
models is then combined and fed as a feature to another level.

Result and Conclusion:

The accuracy of five different models was evaluated by applying them to
the raw and feature extracted datasets. The best three models were then
chosen to construct the ensemble model. The evaluation of the ensemble
model was done using their Brier score as the outcome of activities for the
probabilistic forecast. The dataset was then split into 80% for training
and 20% for testing of the ensemble model. The overall Brier score of our
ensemble model is 0.164. It can precisely classify rare activities such as
psquat, ajump.

37

Chapter 4

Conclusion and Future
Work

4.1 Conclusion

This dissertation proposes an extension to cloud-based Big Data framework
that provide a scalable, efficient, and accurate approach to improve the
performance of data center.

It provides an overview for performance management in cloud infrastruc-
ture. It provides highly flexible and scalable tools to monitor and analyze
events in data center. A distributed scalable architecture is proposed by
combining a NoSQL database with an analytic platform to predict failure.
This was achieved by using a scalable machine-learning algorithm and
a non-intrusive metrics collection mechanism. The analytics component
leverages complex event processing (CEP) technology to monitor and
improve the performance in datacenters.

Papers I, II, and IV, describe the idea of distributed processing for
anomaly detection, failure prediction, and data storage. To achieve scal-
ability, the Big Data tools such as MapReduce and Spark were used.
Moreover, this dissertation also describe a scalable machine-learning algo-
rithm to obtain faster execution times for the analysis of Big Data. The
contribution of this dissertation is scalable anomaly detection and scalable
failure prediction for Big Data cloud platforms. The techniques used in
papers II and IV are based on scalable machine-learning algorithms and
are used to create the described analytics framework. Moreover, this
dissertation helps to improve the accuracy and performance of data center
by predicting failure of computing nodes and jobs in Hadoop clusters as

39

Chapter 4. Conclusion and Future Work

well as detecting anomalous behavior of Big Data applications running on
cloud infrastructure.

Finally, this dissertation provides a supporting tool that enables secure
deletion of the data collected during the analytic step that is described
in papers I, II, and IV. A secure deletion technique is introduced which
enhances transparency to the user when dealing with a distributed file
system in a massive infrastructure.

4.2 Future Work

An immediate extension of this work is to extend paper II, to provide
a proactive measure in a real-time inside Hadoop ecosystem. Moreover,
it can be extended to include the analysis of dataflow. Tracking data
flow requires domain knowledge for interpreting the fields in log files. For
example, blockid in HDFS logs can be used to detect a failure in DataNode
while accessing data that may affect other services running on Hadoop
ecosystem such as; HBase region server.

Further, paper IV can also be extended to provide anomaly detection
in Big Data framework. It can leverage the relationships between the
behavior of various components to verify the potential factors that cause
the system failure in data centers. Exposing relationships between different
components helps in root cause analysis of a failure. Analysis of system
metrics alone cannot provide detail analysis to the users for root cause
of a failure because a fault in one component can be detected as unusual
patterns for many metrics.

In future work, a security framework for providing data governance needs
to be developed. Governed data are more reliable, secure, and ready to use,
while data from an ungoverned has little value for analytics and business
operations. Data governance provides a framework to set policies and
implement controls designed to ensure that information remains accurate,
consistent, and accessible.

40

References

References

[1] Apache Spark - Lightning-fast cluster computing. url: https://
spark.apache.org/.

[2] Mai Abdrabo, Mohammed Elmogy, Ghada Eltaweel, and Sherif
Barakat. “Enhancing Big Data Value Using Knowledge Discovery
Techniques.” In: (2016).

[3] IBM Blogs. The 5 Vs of Big Data. 2016. url: https://www.ibm.
com/blogs/watson-health/the-5-vs-of-big-data/ (visited on
09/18/2016).

[4] Tianqi Chen and Carlos Guestrin. “Xgboost: A scalable tree boosting
system.” In: arXiv preprint arXiv:1603.02754 (2016).

[5] Michael McKinnie. “Cloud Computing: TOE Adoption Factors By
Service Model In Manufacturing.” In: (2016).

[6] Tianqi Chen and Tong He. “xgboost: eXtreme Gradient Boosting.”
In: R package version 0.4-2 (2015).

[7] Kevin Jackson, Cody Bunch, and Egle Sigler. OpenStack cloud
computing cookbook. Packt Publishing Ltd, 2015.

[8] PWG NBD. NIST Big Data interoperability framework. 2015.

[9] Shen Yin and Okyay Kaynak. “Big Data for Modern Industry: Chal-
lenges and Trends [Point of View].” In: Proceedings of the IEEE
103.2 (2015), pp. 143–146.

[10] Min Chen, Shiwen Mao, and Yunhao Liu. “Big data: a survey.” In:
Mobile Networks and Applications 19.2 (2014), pp. 171–209.

[11] Dunren Che, Mejdl Safran, and Zhiyong Peng. “From big data to big
data mining: challenges, issues, and opportunities.” In: International
Conference on Database Systems for Advanced Applications. Springer.
2013, pp. 1–15.

[12] Alfredo Cuzzocrea, Ladjel Bellatreche, and Il-Yeol Song. “Data ware-
housing and OLAP over big data: current challenges and future
research directions.” In: Proceedings of the sixteenth international
workshop on Data warehousing and OLAP. ACM. 2013, pp. 67–70.

[13] Alfredo Cuzzocrea, Domenico Saccà, and Jeffrey D Ullman.“Big data:
a research agenda.”In: Proceedings of the 17th International Database
Engineering & Applications Symposium. ACM. 2013, pp. 198–203.

[14] Nishant Garg. Apache Kafka. Packt Publishing Ltd, 2013.

41

https://spark.apache.org/
https://spark.apache.org/
https://www.ibm.com/blogs/watson-health/the-5-vs-of-big-data/
https://www.ibm.com/blogs/watson-health/the-5-vs-of-big-data/

Chapter 4. Conclusion and Future Work

[15] John Gantz and David Reinsel. “The digital universe in 2020: Big
data, bigger digital shadows, and biggest growth in the far east.” In:
IDC iView: IDC Analyze the future 2007 (2012), pp. 1–16.

[16] Saptarshi Guha, Ryan Hafen, Jeremiah Rounds, Jin Xia, Jianfu Li,
Bowei Xi, and William S Cleveland. “Large complex data: divide
and recombine (d&r) with rhipe.” In: Stat 1.1 (2012), pp. 53–67.

[17] Alex Holmes. Hadoop in practice. Manning Publications Co., 2012.

[18] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT
press, 2012.

[19] Steffen Rendle.“Factorization Machines with libFM.”In: ACM Trans.
Intell. Syst. Technol. 3.3 (May 2012), 57:1–57:22. issn: 2157-6904.
doi: 10.1145/2168752.2168771. url: http://doi.acm.org/10.
1145/2168752.2168771.

[20] Arvind Sathi. Big data analytics: Disruptive technologies for changing
the game. Mc Press, 2012.

[21] Tom White. Hadoop: The definitive guide. ” O’Reilly Media, Inc.”,
2012.

[22] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael J Franklin, Scott Shenker,
and Ion Stoica. “Resilient distributed datasets: A fault-tolerant ab-
straction for in-memory cluster computing.” In: Proceedings of the
9th USENIX conference on Networked Systems Design and Imple-
mentation. USENIX Association. 2012, pp. 2–2.

[23] Paul Zikopoulos, Krishnan Parasuraman, Thomas Deutsch, James
Giles, David Corrigan, et al. Harness the power of big data The IBM
big data platform. McGraw Hill Professional, 2012.

[24] Emmanuel J Candès, Xiaodong Li, Yi Ma, and John Wright. “Robust
principal component analysis?” In: Journal of the ACM (JACM)
58.3 (2011), p. 11.

[25] John Gantz and David Reinsel. “Extracting value from chaos.” In:
IDC iview 1142 (2011), pp. 1–12.

[26] Lars George. HBase: the definitive guide. ” O’Reilly Media, Inc.”,
2011.

[27] R. Kabacoff. R in Action: Data Analysis and Graphics with R.
Manning Pubs Co Series. Manning, 2011. isbn: 9781935182399. url:
http://books.google.no/books?id=qWpWRwAACAAJ.

42

http://dx.doi.org/10.1145/2168752.2168771
http://doi.acm.org/10.1145/2168752.2168771
http://doi.acm.org/10.1145/2168752.2168771
http://books.google.no/books?id=qWpWRwAACAAJ

References

[28] Ralph Kimball and Joe Caserta. The Data WarehouseETL Toolkit:
Practical Techniques for Extracting, Cleaning, Conforming, and
Delivering Data. John Wiley & Sons, 2011.

[29] Jay Kreps, Neha Narkhede, Jun Rao, et al. “Kafka: A distributed
messaging system for log processing.” In: 2011.

[30] Peter Mell and Timothy Grance. “The NIST definition of cloud
computing (draft).” In: NIST special publication 800 (2011), p. 145.

[31] Christopher S Yoo. “Cloud computing: Architectural and policy
implications.” In: Review of Industrial Organization 38.4 (2011),
pp. 405–421.

[32] Paul Zikopoulos, Chris Eaton, et al. Understanding big data: Ana-
lytics for enterprise class hadoop and streaming data. McGraw-Hill
Osborne Media, 2011.

[33] John Gantz and David Reinsel. “The digital universe decade-are you
ready.” In: IDC iView (2010).

[34] Lior Rokach. “Ensemble-based classifiers.” In: Artificial Intelligence
Review 33.1-2 (2010), pp. 1–39.

[35] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. “The hadoop distributed file system.” In: Mass Storage
Systems and Technologies (MSST), 2010 IEEE 26th Symposium on.
IEEE. 2010, pp. 1–10.

[36] Alon Halevy, Peter Norvig, and Fernando Pereira. “The unreasonable
effectiveness of data.”In: IEEE Intelligent Systems 24.2 (2009), pp. 8–
12.

[37] Tony Hey, Stewart Tansley, Kristin M Tolle, et al. The fourth
paradigm: data-intensive scientific discovery. Vol. 1. Microsoft re-
search Redmond, WA, 2009.

[38] Justin Martineau and Tim Finin. “Delta TFIDF: An Improved
Feature Space for Sentiment Analysis.” In: ICWSM 9 (2009), p. 106.

[39] Leif E Peterson. “K-nearest neighbor.” In: Scholarpedia 4.2 (2009),
p. 1883.

[40] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Debo-
rah A Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and
Robert E Gruber. “Bigtable: A distributed storage system for struc-
tured data.” In: ACM Transactions on Computer Systems (TOCS)
26.2 (2008), p. 4.

43

Chapter 4. Conclusion and Future Work

[41] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data
processing on large clusters.” In: Communications of the ACM 51.1
(2008), pp. 107–113.

[42] Alex Smola and SVN Vishwanathan. “Introduction to machine learn-
ing.” In: Cambridge University, UK 32 (2008), p. 34.

[43] Luis M Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik
Lindner. “A break in the clouds: towards a cloud definition.” In:
ACM SIGCOMM Computer Communication Review 39.1 (2008),
pp. 50–55.

[44] Robert M Bell and Yehuda Koren. “Lessons from the Netflix prize
challenge.” In: ACM SIGKDD Explorations Newsletter 9.2 (2007),
pp. 75–79.

[45] Md Rafiul Hassan, Baikunth Nath, and Michael Kirley. “A fusion
model of HMM, ANN and GA for stock market forecasting.” In:
Expert Systems with Applications 33.1 (2007), pp. 171–180.

[46] Roland Kwitt and Ulrich Hofmann. “Robust Methods for Unsu-
pervised PCA-based Anomaly Detection.” In: Proc. of IEEE/IST
WorNshop on Monitoring, AttacN Detection and Mitigation (2006),
pp. 1–3.

[47] Andrew Y Ng. “Feature selection, L 1 vs. L 2 regularization, and ro-
tational invariance.” In: Proceedings of the twenty-first international
conference on Machine learning. ACM. 2004, p. 78.

[48] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. “The
Google file system.” In: ACM SIGOPS operating systems review.
Vol. 37. 5. ACM. 2003, pp. 29–43.

[49] Jin Huang, Jingjing Lu, and Charles X Ling. “Comparing naive
Bayes, decision trees, and SVM with AUC and accuracy.” In: Data
Mining, 2003. ICDM 2003. Third IEEE International Conference
on. IEEE. 2003, pp. 553–556.

[50] David JC MacKay. Information theory, inference and learning algo-
rithms. Cambridge university press, 2003.

[51] Michele Banko and Eric Brill. “Scaling to very very large corpora for
natural language disambiguation.” In: Proceedings of the 39th annual
meeting on association for computational linguistics. Association for
Computational Linguistics. 2001, pp. 26–33.

44

References

[52] Leo Breiman. “Random forests.” In: Machine learning 45.1 (2001),
pp. 5–32.

[53] Irina Rish. “An empirical study of the naive Bayes classifier.” In:
IJCAI 2001 workshop on empirical methods in artificial intelligence.
Vol. 3. 22. IBM New York. 2001, pp. 41–46.

[54] Thomas G Dietterich. “Ensemble methods in machine learning.” In:
International workshop on multiple classifier systems. Springer. 2000,
pp. 1–15.

[55] Joel Larocca Neto, Alexandre D Santos, Celso AA Kaestner, Neto
Alexandre, D Santos, et al. “Document clustering and text summa-
rization.” In: (2000).

[56] Damien Brain, G Webb, D Richards, G Beydoun, A Hoffmann, and
P Compton. “On the effect of data set size on bias and variance
in classification learning.” In: Proceedings of the Fourth Australian
Knowledge Acquisition Workshop, University of New South Wales.
1999, pp. 117–128.

[57] Chuck Ballard, Dirk Herreman, Don Schau, Rhonda Bell, Eunsaeng
Kim, and Ann Valencic. Data modeling techniques for data warehous-
ing. IBM Corporation International Technical Support Organization,
1998.

[58] Marti A. Hearst, Susan T Dumais, Edgar Osman, John Platt, and
Bernhard Scholkopf. “Support vector machines.” In: IEEE Intelligent
Systems and their Applications 13.4 (1998), pp. 18–28.

[59] Boris Mirkin. “Mathematical classification and clustering: From
how to what and why.” In: Classification, data analysis, and data
highways. Springer, 1998, pp. 172–181.

[60] Huan Liu and Rudy Setiono.“Feature selection via discretization.” In:
IEEE Transactions on knowledge and Data Engineering 9.4 (1997),
pp. 642–645.

[61] Arthur P Dempster, Nan M Laird, and Donald B Rubin. “Maximum
likelihood from incomplete data via the EM algorithm.” In: Journal
of the Royal Statistical Society. Series B (Methodological) (1977),
pp. 1–38.

[62] Carl S Rudisill. “Derivatives of eigenvalues and eigenvectors for a
general matrix.” In: AIAA Journal 12.5 (1974), pp. 721–722.

45

Chapter 4. Conclusion and Future Work

[63] Leonard E Baum, JA Eagon, et al. “An inequality with applications
to statistical estimation for probabilistic functions of Markov pro-
cesses and to a model for ecology.” In: Bull. Amer. Math. Soc 73.3
(1967), pp. 360–363.

[64] Andrew J Viterbi. “Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm.” In: Information The-
ory, IEEE Transactions on 13.2 (1967), pp. 260–269.

[65] Evgeniui Borisovich Dynkin. “Markov processes.” In: Markov Pro-
cesses. Springer, 1965, pp. 77–104.

46

Paper I:
R2Time: a framework to
analyse OpenTSDB
timeseries data in HBase.

47

48

R2Time: a framework to analyse OpenTSDB
timeseries data in HBase.

B. Agrawal1, A. Chakravorty1, C. Rong1, T. Wiktorski1

1 Department of Electrical Engineering and Computer Science, University of

Stavanger

Abstract:
In recent years, the amount of time series data generated in
different domains have grown consistently. Analyzing large
time-series datasets coming from sensor networks, power grids,
stock exchanges, social networks and cloud monitoring logs at a
massive scale is one of the biggest challenges that data scientists
are facing. Big data storage and processing frameworks provides
an environment to handle the volume, velocity and frequency
attributes associated with time-series data. We propose an efficient
and distributed computing framework - R2Time for processing
such data in the Hadoop environment. It integrates R with a
distributed time-series database (OpenTSDB) using a MapReduce
programming framework (RHIPE). R2Time allows analysts to
work on huge datasets from within a popular, well supported, and
powerful analysis environment.

Cloud Computing Technology and Science (CloudCom), 2014 IEEE 6th International
Conf. on

49

1. Introduction Paper I

1 Introduction

With the rapid, broad infuse of technology in various sectors of life, the
amounts of data being generated are moving towards enormous propor-
tions. Many real-world application domains as diverse as: epidemiology,
biostatistics, engineering, geo-science, oceanography, neuroscience and
computer science all generate continuous streams of successive data points
in time, spaced at regular intervals. Such sequences of data are termed as
time-series data. The frequency and quantity of generated time-series in
various environments, makes traditional data-storage solutions inefficient
in handling them. NoSQL big data solutions [13] are competent ways to
store and process unstructured time-series data [3]. OpenTSDB 1 is an
open source distributed and scalable time-series database for storing and
indexing time-series metrics in HBase [2]. It is also necessary to be able
to analyse and visualize the data. R [4] is a well-accepted open source
environment for statistical explorations and data visualization.

In this paper, we present a framework called R2Time that uses a
distributed computing model to analyse OpenTSDB time-series data
stored in HBase from the R environment. R2Time allows R users to
interact directly with OpenTSDB data and perform statistical analysis
using the MapReduce [20] programming model. It provides methods
for distributed handling of composite keys, allowing analysis of massive
amount of time-series data in an efficient and scalable manner. The R2Time
platform enables statistical and data mining operations using MapReduce
programming model, through user defined map and reduce tasks for
different analytical requirements. The practicality of this framework was
verified through evaluation of basic statistical functions.

Section 2 gives an overview of the background. Section 3 introduces
the design and implementation of the framework. Section 4 evaluates the
performance and presents the results. Section 5 introduces the related
work and section 6 concludes the paper.

2 Background

The various technologies that would facilitate creation of our data-intensive
time-series processing framework are summarized in the following sections.

1OpenTSDB, [http://opentsdb.net/]

50

Paper I 2. Background

2.1 Hadoop

Hadoop [8] is an open-source framework for distributed storage and data-
intensive processing first developed by Yahoo 2. It has two core projects:
Hadoop Distributed File System (HDFS) [17] and MapReduce [20] pro-
gramming model. HDFS is a distributed file system that splits and stores
data on nodes throughout a cluster, with a number of replicas. It provides
an extremely reliable, fault tolerant, consistent, efficient and cost effective
way to store a large amount of data. The MapReduce model consists of two
key functions: Mapper and Reducer. The Mapper processes input data
splits in parallel through different map tasks and sends sorted, shuffled
outputs to the Reducers that in turn groups and processes them using
reduce tasks for each group.

2.2 HBase

HBase [12] is a distributed column-oriented and NoSQL database that
can be stored in distributed file systems such as HDFS and is modelled
after Google’s BigTable [19]. HBase provides real-time read/write random-
access to very large datasets [8]. In HBase, a table is physically divided
into many regions, which are in turn served by different Regional Servers.
One of its biggest utility is of combining real-time HBase queries with
batch MapReduce jobs, using HDFS as a shared storage platform.

2.3 OpenTSDB

OpenTSDB is an open source distributed and scalable time-series database,
developed by StumbleUpon. It supports real time collection of data points
from various sources. It is designed to handle terabytes of data with better
performance for different monitoring needs. It stores, indexes and serves
metrics at a large scale. Data is stored in HBase in two different tables:
the tsdb table provides storage and query support over time-series data
and the tsdb-uid table maintains an index of globally unique values for all
metrics and tags.

2.4 R and RHIPE

R [14] is a language and environment from the open-source community
widely used among statisticians and data scientists. It provides a wide

2Yahoo! Developer Network, (2014), Hadoop at Yahoo!,
[http://developer.yahoo.com/hadoop/]

51

3. Design And Implementation Paper I

range of libraries for analysis and visualization. R Hadoop Integrated
Processing Environment (RHIPE) is a library for integrating R with the
Hadoop DFS. Using the MapReduce programming model it computes
massive data sets across different nodes within a cluster. It works from
the R environment using standard R programming idioms [4, 6].

3 Design And Implementation

To interpret, analyse and visualize large time-series data, it is necessary
to have an efficient storage mechanism. Time-series data can be stored
in different ways [5]. HBase provides multi-dimensional storage through
usage of unique composite row keys. OpenTSDB makes use of such
keys comprising of timestamps, metrics and tags to store its data. Our
framework helps to analyse time-series data stored by OpenTSDB. R2Time
figure 1 acts as a bridge between RHIPE and OpenTSDB.

Figure 1: R2Time acts as a bridge between OpenTSDB and RHIPE

3.1 Row Key Design

OpenTSDB stores data in HBase using two tables tsdb and tsdb − uid
for storage and lookup respectively. The lookup table maintains an index
of globally unique identifiers and values of all metrics and tags for data
points collected by OpenTSDB. The tsdb table stores data using composite
row keys comprising of metric id, base timestamp (hourly), tag-ids and
tag-values. Each column is grouped under one column family consisting
of column qualifiers representing delta elapse from base time, as shown in
table 4.1.

An OpenTSDB row key design consists of a minimum 13 bytes with at
least one tag. If there are multiple tags, they are appended at the end of

52

Paper I 3. Design And Implementation

T:0 T:10 T:20 T:30 timestamp

row1 14.44 15.44 17.24 34.34 1368187868217

row2 13.65 12.44 15.04 24.44 1368187868317

row3 12.22 14.44 15.40 14.34 1368187868417

.

Table 4.1: OpenTSDB: ’tsdb’ table sample

the row key. Timestamps in the row keys are rounded down to an hourly
boundary. After every hour, values are created for a new row key for the
metric and its tags. The composite row key format is shown in figure 2.
With each additional tag, the row key size increases by 6 bytes.

The column qualifier is of 2 bytes. The first 12 bits are used to store an
integer value, which is delta elapse (in seconds) from the base timestamp
in the row key. The remaining 4 bits are of type flag, the first bit indicates
whether the value is an integer or a floating point number. The remaining
3 bits are reserved for variable-length encoding. The measure/value of
a data point is stored as the cell value and is reserved to 8 bytes. As
example, a data point at timestamp “3456123232” will be stored with its
base timestamp as “3456123000” in its row key and column qualifier as the
delta value “232”. R2Time retrieves data from the tsdb table for a given

Figure 2: OpenTSDB row key format

metric, tags and time ranges using a set of generated row keys. The row
keys are generated in two phases. The first phase generates the start and
end row key for the given metric and time range. Each generated row key
consists of their respective metric and base timestamp. The combination
of metric and base timestamp represents the first 7 bytes of the row key.
These sequences of bytes are fixed, as a metric is created before being
able to store data points. As mentioned earlier, for each metric and tag, a
unique id (uid) is registered in the tsdb-uid table. A data point is stored
in the tsdb table, with its metric uid retrieved from tsdb-uid table. It
occupies the first 3 bytes of a row key, with next 4 bytes being the base
timestamp calculated from given start/end time range.

53

4. Result And Analysis Paper I

In the second phase, filters are created for specified tags. The numbers
of tags for data points vary and could range from single to multiple.
For each tag, a regular expression of 6 bytes is created and appended
together. An example of regular expression for filtering the specified
tags is: Let binary representation of two tags be [0 0 1 0 0 2] and
[0 0 2 0 0 4] respectively. A regular expression for filtering them would be:
\Q\000\000\001\000\000\002\E and \Q\000\000\002\000\000\004\E.
Data stored in HBase are sorted on row keys, which makes performance
with regular expression efficient. For a specified query and date-time range,
data from HBase is read using tag filter regular expressions.

Once the row keys and filters are created, R2Time uses the scan object
of HBase to point at the start and end data blocks. HBase provides
several API for filtering of data. Using RowFilter, CompareFilter and
RegexStringComparator the data between the start and end blocks are
filtered with the generated regular expressions.

3.2 Data Retrieval

Any distributed operations for data stored in HBase are performed using
MapReduce tasks. A MapReduce job is defined through R2Time, which
creates the required row keys from the specified start/end timestamps,
metric and tags. It also provides an extended RecordReader class called
RHHBaseReader to read data from the tsdb table with its row keys as“keys”
and delta columns as “values”. In turn, it uses RHIPE to distribute the
user-defined map() and reduce() tasks through the underlying MapReduce
framework.

The overview of this framework is shown in figure 3 and a pseudo-code
for a simple MapReduce program to count the number of data-points is
provided in listing 4.1.

4 Result And Analysis

Our cluster is comprised of 11 nodes with CentOS linux distro, one node
each for Namenode, Secondary Namenode, HBase Master, Job Tracker,
and Zookeeper. The remaining 6 nodes act as Data Nodes, Regional Severs
and Task Trackers. All nodes have an AMD Opteron(TM) 4180 six-core
2.6GHz processor, 16 GB of ECC DDR-2 RAM, 3x3 TeraBytes secondary
storage and HP ProCurve 2650 switch. Experiments were conducted using
OpenTSDB-1.0, Hadoop-0.20, Hbase-0.90 Apache releases. Our default

54

Paper I 4. Result And Analysis

Figure 3: R2Time architecture. Step1: user supplies input parameters. Step2: R2Time
converts input parameters into start/end row key and filters. Step3: R2Time defines its
RecordReader, getSplit() to get numbers of split to run map tasks. Step4: RecordReader
of R2Time to read <key,value> pairs. Step5: ready to run map and reduce task.

HDFS configuration had a block size of 64 MB and the replication factor
3.

Listing 4.1: Calculation for counting number of data-points using R2Time

1 # Load Rhipe and R2Time library

2 library(Rhipe)

3 library(r2time)

4 rhinit() #Initialize RHIPE framework

5 r2t.init() #Initialize R2Time framework

6

7 # Mapper function in R

8 map <- expression({

9 cnt <- lapply(seq_along(map.keys), function(r) {

10 len <- length(map.values[[r]]);

11 })

12 rhcollect(1, sum(unlist(cnt))) })

13 # Reduce function

14 reduce <- {

15 count <- count + sum(sapply(reduce.values, function(x)

16 sum(x)))

17 },

18 post={ rhcollect(reduce.key, count) })

19 # Submit MapReduce job to R2Time framework

20 r2t.job(startdate, enddate, metric, tagkeys, tagvalues,

21 zkquorum, output, map, reduce)

55

4. Result And Analysis Paper I

4.1 Performance of Statistical Functions

The performance of different statistical functions was evaluated using the
R2Time framework. Figure 4 shows the computation time for count, mean,
linear regression and k-means for different data size.

Figure 4: Performance based on different statistical functions

The count of the total number of data point present in the tsdb table
took just over 50 seconds for processing 25 million data points, com-
prising of 250,000 rows with 100 columns per row. Each cell has a size
of 8 bytes and an additional 2 bytes for its column qualifiers. Each
row occupied disk space of 1013 bytes [(100 × 10bytes) + 13 bytes] or
[(no. of cols.× col. size) + row key size]. The mean function is similar
in nature but more expensive than the count function, due to its internal
conversion of all data point values from serialized bytes to numeric int/float
type. Moreover, the column-oriented format of the stored data requires
it to be counted iteratively, over all columns in each row. Regression
performs further matrix operations of multiplication and transposition,

56

Paper I 4. Result And Analysis

thus requiring additional computations. Linear regression is calculated
using basic implementation of (X ′X) − 1 [24]. Regression is performed
on each map function and later combined to obtain the final result in
the reduce function. K-mean is the most expensive operation out of
all the four functions, due to extra computation cost in calculation as
well as storing/reading the initial centroids. Moreover, it also consists of
computational overhead in terms of calculation of Euclidean distances [7,
22].

The aforementioned functions were chosen because they are constituted
to be some of the core and basic functionalities for any analytics [23, 10]].
Based on these functions, further analysis can be performed in terms of
trend analysis [9], seasonal variation [9] and clustering [21].

Due to the distributed nature of MapReduce, loads are equally dis-
tributed between different nodes. The methods used for distributed han-
dling of composite keys allow the achievement of optimal performance,
limited only by general algorithmic complexities and regular Hadoop over-
heads. Even for reasonably sized datasets (125 million), performance
goals for distribution of calculations outweighed all the overheads. For
larger datasets (>1 billion), the performance is expected to follow intrusive
complexity of each algorithm with minor Hadoop overheads.

As observed from the evaluation, the functions appear to be supralinear
in nature. In particular, this is due to algorithms being scaled using the
MapReduce paradigm. As mentioned earlier, the framework supports
composite keys in an optimal manner and does not introduce added
complexities to any implementation of algorithms. The read latency in
HBase is higher because of its log-structure based storage [1]. HBase
flushes its memory tables to disk in separate files and needs to search each
file for fragments of records [15]. Read latency in HBase can be optimized
through compaction [12].

4.2 Scalability Test

With a larger number of nodes, the loads are further distributed across
which leads to improve in performance as shown in figure 5. More-
over, R2Time provides improved execution time compared to OpenTSDB.
R2time outperforms OpenTSDB by almost 50% for a cluster with 2 nodes.
With a larger number of nodes in the cluster the performance tends to
further improve. The test was performed on 75 million data points for
reading data from HBase. R2Time is built using Hadoop and HBase Java
API. It does not comprise performance despite allowing R users enrich

57

4. Result And Analysis Paper I

Figure 5: Runtime in seconds for reading data on different cluster sizes

statistical functionality.

4.3 Performance based on Scan Cache

scanCache and setBatch are HBase settings that control the number of rows
and columns fetched from regional servers. scanCache and setBatch control
transfer of rows and columns over network and retain them in memory for
quick access. Increasing them to the maximum may not necessarily bring
any improvements, due to increased memory and bandwidth overheads.
Hadoop daemons use RPCs (Remote Procedure Calls) to talk to each
other. Examples include: data nodes communicating with name nodes and
task trackers communicating with job trackers. R2Time allows users to
have custom setting for scan cache and batch sizes. The number of RPC
calls needed for processing a particular amount of data, can be calculated
as RPC = Row×ColsPerRow

Min(ColsPerRow×BatchSize) ×
1

scanACache .
By default, BatchSize is 1. From figure 6, it can be observed that

58

Paper I 4. Result And Analysis

increasing BatchSize to the number of column per row, results in better ex-
ecution time, whereas BatchSize>=ColsPerRow also lowers the number of
RPCs, leading to lesser execution time. Lesser number of RPCs maintains
less interconnection between regional servers. Due to network bandwidth
and memory leakage, the ideal case of RPC=1 cannot be achieved [12].

Figure 6: Performance based on scan cache

Case 1: When BatchSize < ColsPerRow, BatchSize has inverse effect
onRPCs. HereK1 = Rows×ColsPerRow andRPC = K1

BatchSize×scanCache
Case 2: When BatchSize >= ColsPerRow, BatchSize has no effect on
RPCs. Here K2 = Rows and RPCs = K2

scanCache
Figure 7, presents RPCs variation achieved with a constant Batch-

Size=ColsPerRow and varying ScanCache. The x-axis represents the
number of RPCs calls and the y-axis represents the execution time for the
statistical function row counter. It can be observed that RPCs is indirectly
proportional to ScanCache. When RPCs called were 40,000, the execution
time to complete the task was 46 seconds. Tuning the number of RPCs
needed from 40,000 to 40 improved the performance by 65%.

59

5. Related Work Paper I

Figure 7: Performance based on RPCs

5 Related Work

Existing solutions in R such as astsa, tsa3, tseries and temp [18] provide
analytical functionalities for time-series data but lacks operability over
NoSQL based solutions. opentsdbr 3 and StatsD 4 uses HTTP/JSON APIs
to query data from OpenTSDB and import them into R. However, these
solutions are inherently centralized and non scalable, creating performance
bottlenecks due to large requirements of memory, processing and network
throughput. rbase 5 and rhbase 6 provides distributed functionalities for
non time-series data in HBase. RHIPE [16] allows possibility to analyse

3D. Holstius, [https://github.com/holstius/opentsdbr]
4StatsD OpenTSDB publisher backend, [https://github.com/emurphy/statsd-

opentsdb-backend]
5S. Guha, [https://github.com/saptarshiguha/rbase]
6Revolution Analyltics, [https://github.com/RevolutionAnalytics/RHadoop/ wik-

i/rhbase]

60

Paper I 6. Conclusion

simple time-series data that are stored in HDFS, however has limitations
in directly reading data from HBase. RHIPE can read data from HBase
with the help of third-party libraries [16], but has shortcomings in reading
composite keys [5] as used by OpenTSDB. RHadoop 7 provides similar
functionalities as RHIPE, but has significantly poorer performance [11]
due to distribution of required R libraries over the network to every node
in the cluster participating in processing the data.

6 Conclusion

This paper presents our implementation and evaluation of framework
R2Time that integrates R, OpenTSDB and RHIPE. It allows analysing
OpenTSDB data stored in HBase using MapReduce programming model
from within the R environment. OpenTSDB provides a well-accepted
solution for storage of time-series data preserving its properties of time
dependence, quantity, frequency and speed but lacks advance analytical
functionalities. R is a powerful, open source statistical platform with a
wide variety of analytical functionalities including time-series analysis.
RHIPE enables an extension of R functionalities through MapReduce on
data in HDFS and HBase, but remains incompatible with the data format
of OpenTSDB. The R2Time framework fills this gap, integrating these
solutions together enabling distributed processing of large time-series data
across a Hadoop cluster.

References

[1] Wei Tan, Sandeep Tata, Yuzhe Tang, and Liana L Fong. “Diff-Index:
Differentiated Index in Distributed Log-Structured Data Stores.” In:
EDBT. 2014, pp. 700–711.

[2] Nick Dimiduk, Amandeep Khurana, Mark Henry Ryan, and Michael
Stack. HBase in action. Manning Shelter Island, 2013.

[3] Luca Deri, Simone Mainardi, and Francesco Fusco. tsdb: A com-
pressed database for time series. Springer, 2012.

[4] Saptarshi Guha, Ryan Hafen, Jeremiah Rounds, Jin Xia, Jianfu Li,
Bowei Xi, and William S Cleveland. “Large complex data: divide
and recombine (d&r) with rhipe.” In: Stat 1.1 (2012), pp. 53–67.

7Revolution Analyltics, [https://github.com/RevolutionAnalytics/RHadoop/]

61

References Paper I

[5] Dan Han and Eleni Stroulia. “A three-dimensional data model in
hbase for large time-series dataset analysis.” In: Maintenance and
Evolution of Service-Oriented and Cloud-Based Systems (MESOCA),
2012 IEEE 6th International Workshop on the. IEEE. 2012, pp. 47–
56.

[6] Alex Holmes. Hadoop in practice. Manning Publications Co., 2012.

[7] Richa Loohach and Kanwal Garg. “Effect of distance functions on
simple k-means clustering algorithm.” In: International Journal of
Computer Applications 49.6 (2012).

[8] Tom White. Hadoop: The definitive guide. ” O’Reilly Media, Inc.”,
2012.

[9] Theodore Wilbur Anderson. The statistical analysis of time series.
Vol. 19. John Wiley & Sons, 2011.

[10] George EP Box, Gwilym M Jenkins, and Gregory C Reinsel. Time
series analysis: forecasting and control. Vol. 734. John Wiley & Sons,
2011.

[11] Rui Maximo Esteves, Rui Pais, and Chunming Rong. “K-means
clustering in the cloud–a Mahout test.” In: Advanced Information
Networking and Applications (WAINA), 2011 IEEE Workshops of
International Conference on. IEEE. 2011, pp. 514–519.

[12] Lars George. HBase: the definitive guide. ” O’Reilly Media, Inc.”,
2011.

[13] Jing Han, Meina Song, and Junde Song. “A novel solution of dis-
tributed memory NoSQL database for cloud computing.” In: Com-
puter and Information Science (ICIS), 2011 IEEE/ACIS 10th In-
ternational Conference on. IEEE. 2011, pp. 351–355.

[14] R. Kabacoff. R in Action: Data Analysis and Graphics with R.
Manning Pubs Co Series. Manning, 2011. isbn: 9781935182399. url:
http://books.google.no/books?id=qWpWRwAACAAJ.

[15] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakr-
ishnan, and Russell Sears. “Benchmarking cloud serving systems
with YCSB.” In: Proceedings of the 1st ACM symposium on Cloud
computing. ACM. 2010, pp. 143–154.

[16] Saptarshi Guha. “Computing Environment for the Statistical Anal-
ysis of Large and Complex Data.” AAI3449757. PhD thesis. West
Lafayette, IN, USA, 2010. isbn: 978-1-124-57405-9.

62

http://books.google.no/books?id=qWpWRwAACAAJ

Paper I References

[17] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. “The hadoop distributed file system.” In: Mass Storage
Systems and Technologies (MSST), 2010 IEEE 26th Symposium on.
IEEE. 2010, pp. 1–10.

[18] Georgi N Boshnakov. “Time Series Analysis With Applications in
R Series: Springer Texts in Statistics.” In: Journal of Time Series
Analysis 30.6 (2009), pp. 708–709.

[19] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Debo-
rah A Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and
Robert E Gruber. “Bigtable: A distributed storage system for struc-
tured data.” In: ACM Transactions on Computer Systems (TOCS)
26.2 (2008), p. 4.

[20] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data
processing on large clusters.” In: Communications of the ACM 51.1
(2008), pp. 107–113.

[21] Thomas Hill, Pawel Lewicki, and Pawel Lewicki. Statistics: methods
and applications: a comprehensive reference for science, industry,
and data mining. StatSoft, Inc., 2006.

[22] Tan Pang-Ning, Michael Steinbach, Vipin Kumar, et al.“Introduction
to data mining.” In: Library of Congress. 2006, p. 74.

[23] Stanley Wasserman and Katherine Faust. Social network analysis:
Methods and applications. Vol. 8. Cambridge university press, 1994.

[24] Jeremy D Finn. A general model for multivariate analysis. Holt,
Rinehart & Winston, 1974.

63

Paper II:
Analyzing and Predicting
Failure in Hadoop Clusters
Using Distributed Hidden
Markov Model

65

66

Analyzing and Predicting Failure in Hadoop
Clusters Using Distributed Hidden Markov
Model

B. Agrawal1, C. Rong1, T. Wiktorski1

1 Department of Electrical Engineering and Computer Science, University of

Stavanger

Abstract:

In this paper, we propose a novel approach to analyze and predict
failures in Hadoop cluster. We enumerate several key challenges
that hinder failure prediction in such systems: heterogeneity of
the system, hidden complexity, time limitation and scalability. At
first, the clustering approach is applied to group similar error se-
quences, which makes training of the model effectual. Subsequently
Hidden Markov Models (HMMs) are used to predict failure, using
the MapReduce programming framework. The effectiveness of
the failure prediction algorithm is measured by precision, recall
and accuracy metrics. Our algorithm can predict failure with an
accuracy of 91% with 2 days in advance using 87% of data as
training sets. Although the model presented in this paper focuses
on Hadoop clusters, the model can be generalized in other cloud
computing frameworks as well.

67

1. Introduction Paper II

1 Introduction

The cluster system is quite commonly used for high performance in cloud
computing. As cloud computing clusters grow in size, failure detection and
prediction become increasingly challenging [24]. The root causes of failure
in such a large system can be due to the software, hardware, operations,
power failure and infrastructure that support software distribution [26].
The cluster system dealing with a massive amount of data needs to be
monitored and maintained efficiently and economically. There have been
many relevant studies on predicting hardware failures in general cloud
systems, but few on predicting failures in cloud computing frameworks
such as Hadoop [10]. Hadoop is an open-source framework for distributed
storage and data-intensive processing, first developed by Yahoo. Hadoop
provides an extremely reliable, fault-tolerant, consistent, efficient and
cost-effective way of storing a large amount of data. Failure in storing and
reading data from the large cluster is difficult to detect by human eyes.
All the events and activities are logged into their respective application
log files. Logs provide information about performance issues, application
functions, intrusion, attack attempts, failures, etc. Most of the applications
maintain their own logs. Similarly, HDFS system consists of DataNode and
NameNode logs. The logs produced by NameNode, secondary NameNode
and DataNode have their individual format and content.

The prime objective of the Hadoop cluster is to maximize the job process-
ing performance using data-intensive computing. Hadoop cluster normally
consists of several nodes and can execute many tasks concurrently. The
job performance is determined by the job execution time. The execution
time of a job is an important metric for analyzing the performance of
job processing in the Hadoop cluster [11]. As Hadoop is a fault-tolerant
system if the nodes fail, then the node is removed from the cluster in
the middle of the execution and the failed tasks are re-executed on other
active nodes. However, this assumption is not realistic because the master
node can crash. Many researchers reported that the master node crash
is a single point of failure and needs to be handled [4] [17]. The failure
of the data node results in higher job execution time, as the job needs to
re-execute in another node. Failure nodes are removed from the cluster so
that the performance of the cluster improves. Prediction methods operate
mostly on continuously available measures, such as memory utilization,
logging or workload, to identify error pattern. Our analysis in this paper
is mostly only on time of occurrence of different types of error events that

68

Paper II 1. Introduction

ultimately cause failure. This might also help in root cause analysis [15]
for automatic triggering of preventive actions against failures.

We used Hidden Markov Models (HMMs) [2] to learn the characteristics
of log messages and use them to predict failures. HMMs have been
successfully used in speech, handwriting, gesture recognition, and also in
some machine failure prediction. HMM is well suited to our approach
as we have observations of the error messages, but no knowledge about
the failure of the system, which is “hidden”. Our model is based on a
stochastic process with a failure probability of the previous state. As
faults are unknown and cannot be measured, they produce error messages
on their detection (i.e. present in log files).

Our prediction model is divided into four main parts; First, identifying
error sequences and differentiating types of error from the log files. Second,
using the clustering algorithms [1] like K-means [27]. Third, training the
model. Given the labeled training data, HMM method is used to evaluate
maximum likelihood sequence that is used to update the parameters of
our model. Last, predicting failure of the system based on the observation
of an error sequences. The idea of our approach is to predict failures by
analyzing the pattern of error events that imitates failure. Experimental
results for this method can predict failure with 91% accuracy for two days
in advance (prediction time). It also shows that our approach can compute
on the massive amount of datasets. Ultimately, our approach can be used
to improve the performance and reliability of the Hadoop cluster.

1.1 Related work

A significant number of studies have been done on the performance evalu-
ation and failure diagnosis of systems using log analysis. However, most
of the prediction methods focus only on the system logs, but not on the
application logs. Many studies have been done on predicting hardware
failure in the cluster. For example, studies in [16], [26] and [7] provide a
proactive method of predicting failure in the cluster, based on system logs.
These methods provide failure in hardware level but fail to provide failure
of a node in the Hadoop clusters.

Konwinski et al. [19] used X-trace [14] to monitor and improve Hadoop
jobs. X-trace allows path-based tracing on Hadoop nodes. Additionally,
by using X-trace in conjunction with other machine-learning algorithms,
they were able to detect failure with high accuracy. Similarly, SALSA
[20] is another tool in which system logs are analyzed to detect failure
using distributed comparison algorithm. Also, it shows information on

69

1. Introduction Paper II

how a single node failure can affect the overall performance of the Hadoop
cluster. All of these papers present failure detection algorithm in the
Hadoop cluster but lacks prediction algorithm.

Fulp et al. [18] demonstrated failure prediction in the hard disk using
SVMs (Support Vector Machines) with an accuracy of 73% with two days
in advance. On the other hand, Liang et al. [24] uses RAS event logs
to predict failure in IBM BlueGene/L. They compared their results with
Support Vector Machines (SVMs), a traditional Nearest Neighbor method,
a customized Nearest Neighbor method and a rule-based classifier, and
found that all were out-performed by the customized Nearest Neighbor
method. However, these all provide failure prediction algorithm in the
different areas, but still lacks to provide precise model.

Hidden Markov Models have been used in pattern recognition tasks
such as handwriting detection [12], gene sequence analysis [30] [23], gesture
recognition [29], language processing [28] [31], hard drive failure [9] or
machine failure [16]. HMM is a widely used model due to it’s flexibility,
simplicity, and adaptivity. Indeed, as mentioned earlier, Hadoop log data
have challenging characteristics, which thus require expert knowledge to
transform data into an appropriate form.

1.2 Our Contribution

We proposed a novel algorithm for failure prediction algorithm using
MapReduce programming framework, thus achieving better scalability
and better failure prediction probability. The proposed model is based on
distributed HMM through MapReduce framework in a cloud-computing
environment. Through this paper, we also present our idea to increase the
performance of the Hadoop Cluster by predicting failure. The accuracy
of our model is evaluated using performance metrics (precision, recall,
F-measure).

1.3 Paper Structure

Section II provides an overview of the background. Section III introduces
the design and approach of our analysis. Section IV evaluates our algorithm
and presents the results. Section V concludes the paper.

70

Paper II 2. Background

2 Background

2.1 Hadoop

Hadoop [10] is an open-source framework for distributed storage and
data-intensive processing, first developed by Yahoo. It has two core
projects: Hadoop Distributed File System (HDFS) and MapReduce [25]
programming model. HDFS is a distributed file system that splits and
stores data on nodes throughout a cluster, with a number of replicas.
It provides an extremely reliable, fault-tolerant, consistent, efficient and
cost-effective way to store a large amount of data. The MapReduce model
consists of two key functions: Mapper and Reducer. The Mapper processes
input data splits in parallel through different map tasks and sends sorted,
shuffled outputs to the Reducers that in turn groups and processes them
using reduce tasks for each group.

2.2 Hidden Markov Models

HMM [33] is based on Markov Models, a tool for representing probability
distributions over sequences of observations. It is a probabilistic model, in
which system is assumed to be a Markov process [35] (memoryless process)
with hidden (unobserved) states. HMM consists of unobserved states, and
each state is not directly visible, but output and dependent on the state
are visible. It has a set of states each of which has a number of transitions
and emissions state probability as shown in Figure 2.7. HMM typically
used to solve three types of problem: detection or diagnostic problem,
decoding problem and learning problem. Forward-backward algorithm [21]
solves diagnostic problem. Similarly, Viterbi algorithm [34] solves decoding
problems and Baum-Welch algorithm [32] solves learning problem.

3 Approach

In this section, we describe how the useful information from different logs
are extracted and the use of HMMs to predict failure from those log files.

The proposed method deals with all the log files associated with Hadoop
cluster (HDFS): DataNode and NameNode logs. The log files are collected
from the different nodes associated with the cluster. The logs generated
from 11-node clusters are stored in HDFS system using Apache Flume
collector [13]. The log files contain all unwanted and wanted information
that makes it difficult for the human to read. For this reason, pre-processing

71

3. Approach Paper II

of logs is needed before storing to HDFS system. In the pre-processing
steps, all the log messages are extracted and unwanted and noisy messages
are removed. The stored data is further analyzed using HMM model.
Failure prediction algorithm is used to detect a failure and ignore defective
node before running any task.

HDFS system consists of NameNode and DataNode. NameNode is
the master node on which job tracker runs. It consists of the metadata
(information about data blocks stored in DataNodes - the location, size of
the file, etc.). It maintains and manages the data blocks, which are present
on the DataNodes. The DataNode is a place where actual data is stored.
The DataNode runs three main types of daemon: Read Block, Write Block,
and Write-Replicated Block. NameNode and DataNode maintain their
own logging format. Each node records events/activities related to reading,
writing, and replication of HDFS data blocks. Each log is stored on the
local file-system of the executing daemon. Our analysis is based on some
important insights about the information available through Hadoop logs.
Block ID in DataNode log provides a unique identifier, which represents
the HDFS blocks that consist of raw bytes of the data file.

Before using log messages to build the model, we structured and ap-
pended all the log files into systematized forms. Four steps are involved in
our approach: pre-processing, clustering, training, and predicting as shown
in figure 1. In the first step, all useful information, such as timestamp,
error status, error type, node ID and user ID, are extracted, and new log
template is created. Since different logs reside on the local disk in different
nodes, it is necessary to collect and attach all the log information into a
one-log template. In the second step, we use the clustering algorithm to
differentiate various types of errors. With the clustering technique, real
error types that propagate to failure are recognized. And the third and
fourth step is the training and prediction algorithm using HMM model,
which is discussed in detail below.

We adopted Hidden Markov models (HMMs) for this approach. HMM
applies machine-learning techniques to identify whether a given sequence
of the message is failure-prone or not. HMM models parameters can be
adjusted to provide better prediction. The sequences of an error event are
fed into the model as an input. Each error event consists of a timestamp,
error ID and error type, which determine the types of error. Failure and
non-failure information are extracted from error sequences to create a
transition matrix. HMM is characterized by the following modules: hidden
states X = {x1, x2, x3}, observations state Y = {y1, y2, y3}, transition

72

Paper II 3. Approach

HDFS

Pre-processing Clustering

<ts, e1>
<ts, e2>
<ts, e3>
<ts, e4>
<ts, e5>

….
….

<ts, e6>

Training data

Train HMM Predict
P(F(t))

Initial
parameter

<X,O>

<A,B,pi>

<A,B,pi,O> <tp,x1>

tp
Prediction time

Figure 1: Workflow of failure prediction.

probabilities A = aij = {P [qt+1 = xj |qt = xj]} and emission probabilities
B = bij . HMM (λ) is denoted as

λ = (π,A,B) (4.1)

Where, A is the transition matrix whose elements give the probability
of transitioning from one state to another, B is the emission matrix
giving bj(Yt) the probability of observing Yt. π is initial state transition
probability matrix.

The observation symbols O1 = {e1, e2, e3, e4, e5, e6} are referred to error
events of the system, and failures are represented as hidden state of HMM
as shown in figure 2. Error patterns are used as training set for HMM
model if the model transits to a failure state each time a failure occurs in
the training data. Two steps are necessary for obtaining training sequences
for the HMM. The first step involves the transformation of error types

Figure 2: Mapping Failure and errors to Hidden Markov Model.

into a special error symbol in order to classify different types of error.
Error event timestamps and error categories form an error sequence (event-
driven sequence). HMM applies machine-learning techniques in order to
identify characteristic properties of an error sequence. It also helps to

73

3. Approach Paper II

detect whether a given error sequence is failure-prone or not. Moreover,
we trained the model using past error sequence. The model adjusts its
parameters based on those records. The trained model is then applied to
the new error sequences to predict failure. Such an approach in machine
learning is known as “supervised learning”. To extract error sequence,
timestamp and error ID are extracted in preprocessing step as mentioned
earlier. Let “e” represent different types of error in the log files. The series
of messages that appear in “e” form a time-series representation of events
that occurred. In this paper, all categories of “e” are identify using k-means
clustering technique [27]. Six different types of error are distinguished
from the given log files and the set e would be (e1, e2, e3, e4, e5, e6). This
error set is known as error sequence or observation for our model.

e1 e2 e3 e4
t

Prediction time (tp)Sliding window(d(t))

P(F(t))

FF

Failure

Figure 3: Failure prediction, where e1, e2, e3 and e4 are error sequences, and F is the
failure in the system.

In the next step, the model is defined using error sequences. Error
sequence consists of failure and non-failure information that has occurred
within a sliding window of length ∆t as shown in figure 3. F is the failure
in the system and e1, e2, e3, e4 represent the error events in the log files.
Failure tp is predicted based on ∆t error sequence. HMM models are
trained using error sequences. The main goal of training is that failure
characteristics are generated from the error sequences. The non-failure
model stays rather remains unspecific. Once the models are trained,
new upcoming failure is evaluated from the error sequences. To predict
upcoming failure, sequence likelihood is computed from HMM models.

In this paper, there is a sequence of log data over timestamp, which we
needed to train our HMM model using a set of the sequence of log output
as observation O = (info, warn, error, fatal). N= 4 for HMM model is
denoting the stages in time that are allowed in different transitions in
the HMM training. Each error sequence may result in failure-prone or

74

Paper II 3. Approach

non-failure system. The Failure-prone system has a similar pattern of
errors, which result in failure. The probability of log data is computed
using Forward-Backward Algorithm as proposed in [32].

Training the model: First, from the log template, sequence of an error
message is extracted to form an output sequence composed of 1,2,3,4,5
and 6’s, one number for each time by rounding the timestamp of logs of a
job to the nearest integer. Thus, the state transition in the HMM takes
place every time step until the absorption state is reached. The choice
of time step determines the speed of learning and its accuracy. A log
sequence of a job always starts from the state x1 and ends at x2, and the
initial probabilities for π are fixed to be 0.5. With the output sequence as
described, we compute the most likely hidden state transition sequence
and the model parameters λ = (A,B, π).

We have adapted Expectation-Maximization algorithm for training
purpose. During training, the HMM parameters π, A, B are optimized.
These parameters are maximized in order to maximize sequence likelihood.
For initial steps, a number of states, a number of observations, transition
probability, and emission probability are pre-specified. In this experiment,
initial parameters are calculated from the past observation, such that
the model can predict accurately from the initial phase. As the training
of model progress, the parameter value gets closer to the actual value.
Training in HMM is done using Expectation-Maximization algorithm,
where backward variable β and forward variable α are evaluated. This
algorithm helps to maximize the model parameters based on maximum
likelihood. If the model started randomly from a pre-specified HMM
parameter, it would take several iterations to get superior parameters,
which best fit, the model for prediction. The goal of training datasets is
to adjust the HMM parameters in such a way that error sequences are
best represented and that the model transits to a failure state each time a
failure occurs in the training datasets.

There are a few existing methods such as; Baum-Welch algorithm
and gradient-descent techniques that use iterative procedures to get the
locally maximized likelihood. However, this iterative procedure might
be significantly slow if the observed sequence is large. In this paper, we
proposed a slightly different algorithm to train data, which is significantly
faster than the traditional method. The idea is to formulate the probability
of the observation sequence Ot, Ot+1 pairs and then to use Expectation-
Maximization algorithm to learn for this model λ.

In order to train the model, there is a need to find the repetitive error

75

3. Approach Paper II

Algorithm 1 Failure State Prediction Algorithm

1: Initialized O = {o1, o2, ..o6} . different types of error as observation
2: S = {Healthy, Failure} . two hidden state
3: m = 2 . m is number of hidden state
4: n = 6 . n is number of different types of errors
5: Initialized Aij , Bij . emission matrix Bij stores the probability of

observable sequences oj from state si . transition matrix Aij stores
the transition probability of transiting from state si to state sj

6: Initialized Π . an array of initial probabilities
7: Y = {y1, y2...yk} . an error sequence of observation
8: Map:
9: Initialized StatePathProb

10: Update Aij , Bij
11: PathProb = StatePathProb ∗Bij
12: for each state sj do
13: StatePathProb[j, i]← maxk (StatePathProb[k, i− 1] ·Akj ·Bjyi)
14: PathProb[j, i]← arg maxk (PathProb[k, i− 1] ·Akj ·Bjyi)
15: end for
16: zi ← arg maxk (StatePathProb)
17: xi ← Si
18: for i← T − 1, ..., 1 do . T is length of observable sequence
19: zi ← PathProb[zi, i]
20: xi ← zi
21: end for
22: emit(timestamp, x)

sequence in the data. To do so first, we need to compute the likelihood
of raw data in the desired range. This problem is computed using EM
algorithm. The EM consists of two steps: an expectation (E) step, which
creates a function for calculating log-likelihood from the current estimate,
and a maximization (M) step, which computes parameters maximizing
the expected log-likelihood calculated on the E step. This EM algorithm
is carried on a map and reduce task.

After getting all the parameter of the model (λ), the prediction al-
gorithm is used to get all the hidden states that are calculated using
maximum likelihood of the past sequences.

Prediction: Failure is the hidden layer in our HMM model. The

76

Paper II 4. Result

Hidden state is calculated using Viterbi algorithm. There is a sequence of
observations 0 = O1, O2....On with given model λ = (A,B, π). The aim
of Viterbi algorithm is to find optimal state sequence for the underlying
Markov chain, and thus, reveal the hidden part of the HMM λ. The final
goal of Viterbi is to calculate the sequence of states (i.e S = {S1, S2, ...Sn}),
such that

S = argmaxsP (S;O, λ) (4.2)

Viterbi algorithm returns an optimal state sequence of S. At each step
t, the algorithm allow S to retain all optimal paths that finish at the
N states. At t+1, the N optimal paths get updated and S continues
to grow in this manner. Figure 4 shows details architecture of Viterbi
algorithm implementation. The goal is to predict hidden state from the
given observation 0 = {O1, O2....On} . No reducer is used and on each
mapper, a local maximum is calculated and state path based on maxima
are observed. Two states defined in algorithm 1: healthy and failure are
determined based on error sequence.

Map

Map

Map

Reduce

<0,A,B,pi>

Training
data

Map

Map

Map

<0,A1,B1,pi1>

Update
HMM A,B,pi

Training Prediction

logP(x,o|λ)

Figure 4: Architecture of an algorithm predicting failure state using MapReduce
programming framework.

4 Result

Setup: Our cluster is comprised of 11 nodes with CentOS Linux distro,
one node each for Namenode, Secondary Namenode, HBase Master, Job
Tracker, and Zookeeper. The remaining 6 nodes act as Data Nodes, Re-
gional Severs, and Task Trackers. All nodes have an AMD Opteron(TM)
4180 six-core 2.6GHz processor, 16 GB of ECC DDR-2 RAM, 3x3 Ter-
aBytes secondary storage and HP ProCurve 2650 switch. Experiments
were conducted using RHIPE, Hadoop-0.20, Hbase-0.90 Apache releases.

77

4. Result Paper II

Our default HDFS configuration had a block size of 64 MB and the
replication factor of 3.

The prediction techniques presented in this paper have been applied to
the data generated while performing operations in the Hadoop Cluster.
With 1 month of Hadoop log data, we trained HMM model using sliding
windows varying from 1 to 2 hours in length. A Large amount of Hadoop log
data was generated using SWIM [8], a tool to generate arbitrary Hadoop
jobs that emulate the behaviors of true production jobs of Facebook.
We used AnarchyApe [3] to create different types of failure scenarios in
Hadoop cluster. AnarchyApe is an open-source project, created by Yahoo!
developed to inject failures in Hadoop cluster [5].

4.1 Types of error

2014−11−12 2014−11−13 2014−11−14 2014−11−15 2014−11−16

Date

of

 e
rr

or
s

0
50

10
0

15
0

20
0

Network connection
Memory overflow
Security setting
Unknown
Java I/O error
Namenode failure

Figure 5: Different types of error in Hadoop cluster during 5 days interval.

Errors such as operational, software, configuration, resource and hard-
ware are present in Hadoop cluster. In this analysis, hardware failure was
not considered. Operational, software and resource errors are taken into
consideration to detect a failure in the software level of Hadoop cluster.
Operation errors include missing operations and incorrect operations, and
they are easily identified in log messages by operations: HDFS READ,

78

Paper II 4. Result

HDFS WRITE, etc. Resource errors (memory overflow, node failure)
refer to resource unavailability occurring in the computing environment,
while software errors (Java I/O errors, unexceptional) refer to software
bugs and incompatibility. These types of error are detected on different
DataNodes. Log messages are classified into six different types of error:
Network connection, Memory overflow, Security setting, Unknown, Java
I/O error, NameNode failure as shown in Figure 5. Errors like network
connection and security setting are most occurring errors in the Hadoop
cluster. In the pre-processing step, each log message is tagged with certain
error ID and using the clustering algorithm like k-means, different types
of error are analyzed.

4.2 Predicting failure state in Hadoop cluster.

Different types of error are used as input observation in our model i.e.O =
{O1, O2....On}. O1 to O6 are error sequences, and O7 is a non-error
sequence from the log template. This observation is used in the model
λ = (π,A,B) to detect S = {Healthy, Failure}. Based on the error
sequence in the HMM model, with the help of Viterbi algorithm, hidden
state sequences are generated which are shown in gray and red line in
figure 6. The red line indicates failure state and gray indicates non-failure
state. Similarly, black and gray line shows actual failure state. Based on
the probability of the previous state and HMM parameters, the failure,
and non-failure states are determined. Error sequences are predicted using
EM algorithm, and based on predicted error sequences, hidden states
(failure or non-failure) are predicted. Error in prediction is calculated by
differencing the actual and predicted value as shown in the graph. At first
step, our model is trained from the previous record. As the time passes,
the model gets more accurate. The training of the model depends solely on
the initial parameter. For this example, initial parameters are calculated
from the past record. That is why this model has similar behavior from
the initial point, but not an accurate prediction.

The models’ ability to predict failure precisely is evaluated by four
metrics: precision, recall, false positive rate and F-measure. These metrics
are frequently used for prediction evaluation and have been used in many
relevant researches as in e.g. [22]. Four metrics are defined in table 4.1:

From the above observation, we used log entries of 800 hours out of
which; first 650 hours is used for training and last 150 hours is used for
prediction. In total, we have 24000 observations for 150 hours of prediction
time. Different cases for prediction is shown in table 4.2. The accuracy of

79

4. Result Paper II

Time (in hours)

of

 e
rr

or
 s

eq
ue

nc
e

0 200 400 600 800

0
3

6
9

13
18

Actual Failure State

Predicted Failure State

Error in Prediction

Figure 6: Using HMM to predict failure and normal state. Error sequences are the
observation or observable state of HMM and gray-black bar indicate the hidden state,
gray line indicate non-failure state and black indicate failure state. Similarly, red line
indicates predicted failure state. And blue line indicates prediction error.

Metric Definition Calculation

Precision p = TP
TP+FP 0.93

Recall r = TP
TP+FN 0.91

False positive rate fpr = FP
FP+TN 0.091

F-measure F = 2pr
p+r 0.92

Accuracy accuracy = TP+TN
TP+FP+FN+TN 0.91

Table 4.1: Definition of metrics.

the model is 91.25 %(9000 + 12900/24000). And the precision and recall
are 0.93 and 0.91 respectively.

Higher precision ensures fewer false positive errors, while a model with
high recall ensures lesser false negative errors. Ideal failure prediction

80

Paper II 4. Result

Predicted failure state Predicted non-failure state

TN: 9000 FP: 900

FN: 1200 TP: 12900

Table 4.2: Observation for different cases.

model would achieve higher precision and recall value, i.e. precision =
recall = 1. However, both high recall and precision are difficult to obtain
at the same time. They are often inversely proportional to each other.
Improving recall in most cases lowers the precision and vice-versa. F-
measure ensures that the model is accurate or not, and makes sure both
precision and recall are reasonably high. In HMM method, a threshold
value allows the control of true positive rate and false positive rate. This
is one of the big advantages of HMM, method over other techniques.

4.3 Scalability

30
0

40
0

50
0

60
0

70
0

80
0

90
0

Data Size (GB)

E
xe

cu
tio

n
T

im
e

(s
ec

)

●
●

●

●

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5 6 7

1 map task
5 map task

Figure 7: Scalability with increases in data size

To test the implementation of MapReduce HMM model in the cluster,

81

4. Result Paper II

60
0

70
0

80
0

90
0

10
00

11
00

12
00

Nodes

E
xe

cu
tio

n
T

im
e

(s
ec

)

1 2 3 4 5

Figure 8: Scalability with increases in cluster size.

we fixed the number of nodes in the cluster to be 6. And, then tested
HMM by varying the number of data size from 1 GB (85 million error
sequences) to 7 GB (571 million error sequences). Figure 7 demonstrates
the scalability of the algorithm. It shows a steady increase in execution
time with the growth in data size. The brown and black lines in the graph
represent the parallel and sequential execution of map task. It is obvious
that parallel execution outperforms.

In the figure 8, we set the number of nodes participating in the MapRe-
duce calculations to 1, 2, 3, 4, or 5. The algorithm was then tested on the
dataset of size 5 GB (138 million error sequences). The experimental result
shows that the execution time improves with an increase in the number
of nodes. This increase can significantly improve the system processing
capacity for the same scale of data. By adding more nodes to the system,
the performance improves and computation can be distributed across the
nodes [6]. We conclude that this performance improvement would be
even more noticeable with large-scale data involving many more nodes.
The typical scalability behavior would illustrate a linear line in the graph.
However, it is impossible to realize this ideal behavior due to many factors
such as network overheads.

82

Paper II 5. Conclusion

5 Conclusion

As failures in cluster systems are more prevalent, the ability to predict
failures is becoming a critical need. To address this need, we collected
Hadoop logs from Hadoop cluster and developed our algorithm on the log
messages. The messages in the logs contain error and non-error information.
The messages in the log were represented using error IDs, which indicate
message criticality. This paper introduced a novel failure prediction
method using distributed HMM method over distributed computation.
The idea behind this model is to identify the error pattern that indicates
an upcoming failure. A machine learning approach like HMM has been
proposed here, where the model is trained first using previously pre-
processed log files and then it is used to predict the failures. Every log
entry is split into equal intervals, defined by sliding window. These entries
are separated into error sequence and non-error sequence. Training of
the model is done using past observation. Viterbi’s algorithm does the
prediction of hidden state. Experimental results using Hadoop log files
provide an accuracy of 91% and F-measure of 92% for 2 days of prediction
time. These results indicate that it is promising to use the HMM method
along with MapReduce to predict failure.

References

[1] Adil Fahad, Najlaa Alshatri, Zahir Tari, Abdullah Alamri, Ibrahim
Khalil, Albert Y Zomaya, Sebti Foufou, and Abdelaziz Bouras. “A
survey of clustering algorithms for big data: Taxonomy and empirical
analysis.” In: IEEE transactions on emerging topics in computing
2.3 (2014), pp. 267–279.

[2] George EP Box, Gwilym M Jenkins, and Gregory C Reinsel. Time
series analysis: forecasting and control. John Wiley & Sons, 2013.

[3] David. anarchyape. 2013. url: https://github.com/david78k/
anarchyape (visited on 11/08/2014).

[4] Pedro de Botelho Marcos. “Maresia: an approach to deal with the
single points of failure of the MapReduce model.” In: 2013 43rd
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN) (2013). doi: http://hdl.handle.net/10183/
65635.

83

https://github.com/david78k/anarchyape
https://github.com/david78k/anarchyape
http://dx.doi.org/http://hdl.handle.net/10183/65635
http://dx.doi.org/http://hdl.handle.net/10183/65635

References Paper II

[5] Faraz Faghri, Sobir Bazarbayev, Mark Overholt, Reza Farivar, Roy
H Campbell, and William H Sanders. “Failure scenario as a ser-
vice (FSaaS) for Hadoop clusters.” In: Proceedings of the Workshop
on Secure and Dependable Middleware for Cloud Monitoring and
Management. ACM. 2012, p. 5.

[6] Richard Mccreadie, Craig Macdonald, and Iadh Ounis. “MapReduce
Indexing Strategies: Studying Scalability and Efficiency.” In: Inf.
Process. Manage. 48.5 (Sept. 2012), pp. 873–888. issn: 0306-4573.
doi: 10.1016/j.ipm.2010.12.003. url: http://dx.doi.org/10.
1016/j.ipm.2010.12.003.

[7] Florin Dinu TS Eugene Ng. “Analysis of Hadoop’s Performance
under Failures.” In: Rice University (2012).

[8] SWIMProjectUCB. SWIMProjectUCB/SWIM. 2012. url: https:
//github.com/SWIMProjectUCB/SWIM (visited on 11/08/2014).

[9] Teik-Toe Teoh, Siu-Yeung Cho, and Yok-Yen Nguwi.“Hidden Markov
Model for hard-drive failure detection.” In: Computer Science &
Education (ICCSE), 2012 7th International Conference on. IEEE.
2012, pp. 3–8.

[10] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc.,
2012. isbn: 9781449311520.

[11] Hyunseok Chang, Murali Kodialam, Ramana Rao Kompella, TV
Lakshman, Myungjin Lee, and Sarit Mukherjee. “Scheduling in
mapreduce-like systems for fast completion time.” In: INFOCOM,
2011 Proceedings IEEE. IEEE. 2011, pp. 3074–3082.

[12] Thomas Plotz and Gernot A Fink. Markov Models for handwriting
recognition. Springer, 2011.

[13] Apache. Apache Flume. 2010. url: https://flume.apache.org/
FlumeUserGuide.html (visited on 11/08/2014).

[14] Rodrigo Fonseca. X-Trace. 2010. url: https : / / github . com /

rfonseca/X-Trace (visited on 11/08/2014).

[15] Hamzeh Zawawy, Kostas Kontogiannis, and John Mylopoulos. “Log
filtering and interpretation for root cause analysis.” In: ICSM. IEEE
Computer Society, 2010, pp. 1–5. isbn: 978-1-4244-8630-4. url:
http://dblp.uni-trier.de/db/conf/icsm/icsm2010.html#

ZawawyKM10.

84

http://dx.doi.org/10.1016/j.ipm.2010.12.003
http://dx.doi.org/10.1016/j.ipm.2010.12.003
http://dx.doi.org/10.1016/j.ipm.2010.12.003
https://github.com/SWIMProjectUCB/SWIM
https://github.com/SWIMProjectUCB/SWIM
https://flume.apache.org/FlumeUserGuide.html
https://flume.apache.org/FlumeUserGuide.html
https://github.com/rfonseca/X-Trace
https://github.com/rfonseca/X-Trace
http://dblp.uni-trier.de/db/conf/icsm/icsm2010.html#ZawawyKM10
http://dblp.uni-trier.de/db/conf/icsm/icsm2010.html#ZawawyKM10

Paper II References

[16] Allen H Tai, Wai-Ki Ching, and Ling-Yau Chan. “Detection of
machine failure: Hidden Markov Model approach.” In: Computers &
Industrial Engineering 57.2 (2009), pp. 608–619.

[17] Feng Wang, Jie Qiu, Jie Yang, Bo Dong, Xinhui Li, and Ying Li.
“Hadoop high availability through metadata replication.” In: Proceed-
ings of the first international workshop on Cloud data management.
ACM. 2009, pp. 37–44.

[18] Errin W. Fulp, Glenn A. Fink, and Jereme N. Haack. “Predicting
Computer System Failures Using Support Vector Machines.” In:
Proceedings of the First USENIX Conference on Analysis of System
Logs. WASL’08. San Diego, California: USENIX Association, 2008,
pp. 5–5. url: http://dl.acm.org/citation.cfm?id=1855886.
1855891.

[19] Andy Konwinski, Matei Zaharia, Randy Katz, and Ion Stoica. X-
tracing Hadoop. 2008.

[20] Jiaqi Tan, Xinghao Pan, Soila Kavulya, Rajeev Gandhi, and Priya
Narasimhan.“SALSA: Analyzing Logs as StAte Machines.”In: WASL
8 (2008), pp. 6–6.

[21] Md Rafiul Hassan, Baikunth Nath, and Michael Kirley. “A fusion
model of HMM, ANN and GA for stock market forecasting.” In:
Expert Systems with Applications 33.1 (2007), pp. 171–180.

[22] Felix Salfner and Miroslaw Malek. “Using hidden semi-markov mod-
els for effective online failure prediction.” In: Reliable Distributed
Systems, 2007. SRDS 2007. 26th IEEE International Symposium on.
IEEE. 2007, pp. 161–174.

[23] Alessandro Daidone, Felicita Di Giandomenico, Andrea Bondavalli,
and Silvano Chiaradonna. “Hidden Markov models as a support
for diagnosis: Formalization of the problem and synthesis of the
solution.” In: Reliable Distributed Systems, 2006. SRDS’06. 25th
IEEE Symposium on. IEEE. 2006, pp. 245–256.

[24] Yinglung Liang, Yanyong Zhang, Anand Sivasubramaniam, Ramen-
dra K Sahoo, Jose Moreira, and Manish Gupta. “Filtering failure logs
for a bluegene/l prototype.” In: Dependable Systems and Networks,
2005. DSN 2005. Proceedings. International Conference on. IEEE.
2005, pp. 476–485.

85

http://dl.acm.org/citation.cfm?id=1855886.1855891
http://dl.acm.org/citation.cfm?id=1855886.1855891

References Paper II

[25] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data
Processing on Large Clusters.” In: Proceedings of the 6th Conference
on Symposium on Opearting Systems Design & Implementation -
Volume 6. OSDI’04. San Francisco, CA: USENIX Association, 2004,
pp. 10–10. url: http://dl.acm.org/citation.cfm?id=1251254.
1251264.

[26] Ramendra K. Sahoo, Anand Sivasubramaniam, Mark S. Squillante,
and Yanyong Zhang. “Failure Data Analysis of a Large-Scale Hetero-
geneous Server Environment.” In: 2013 43rd Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks (DSN)
(2004), p. 772. doi: http://doi.ieeecomputersociety.org/10.
1109/DSN.2004.1311948.

[27] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine
D. Piatko, Ruth Silverman, and Angela Y. Wu. “An Efficient k-
Means Clustering Algorithm: Analysis and Implementation.” In:
IEEE Trans. Pattern Anal. Mach. Intell. 24.7 (July 2002), pp. 881–
892. issn: 0162-8828. doi: 10.1109/TPAMI.2002.1017616. url:
http://dx.doi.org/10.1109/TPAMI.2002.1017616.

[28] Xuedong Huang, Alex Acero, Hsiao-Wuen Hon, and Raj Foreword
By-Reddy. Spoken language processing: A guide to theory, algorithm,
and system development. Prentice Hall PTR, 2001.

[29] Andrew D Wilson and Aaron F Bobick. “Parametric hidden markov
models for gesture recognition.” In: Pattern Analysis and Machine
Intelligence, IEEE Transactions on 21.9 (1999), pp. 884–900.

[30] Richard Durbin. Biological sequence analysis: probabilistic models of
proteins and nucleic acids. Cambridge university press, 1998.

[31] Lawrence Rabiner.“A tutorial on hidden Markov models and selected
applications in speech recognition.” In: Proceedings of the IEEE 77.2
(1989), pp. 257–286.

[32] Arthur P Dempster, Nan M Laird, and Donald B Rubin. “Maximum
likelihood from incomplete data via the EM algorithm.” In: Journal
of the Royal Statistical Society. Series B (Methodological) (1977),
pp. 1–38.

[33] Leonard E Baum, JA Eagon, et al. “An inequality with applications
to statistical estimation for probabilistic functions of Markov pro-
cesses and to a model for ecology.” In: Bull. Amer. Math. Soc 73.3
(1967), pp. 360–363.

86

http://dl.acm.org/citation.cfm?id=1251254.1251264
http://dl.acm.org/citation.cfm?id=1251254.1251264
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/DSN.2004.1311948
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/DSN.2004.1311948
http://dx.doi.org/10.1109/TPAMI.2002.1017616
http://dx.doi.org/10.1109/TPAMI.2002.1017616

Paper II References

[34] Andrew J Viterbi. “Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm.” In: Information The-
ory, IEEE Transactions on 13.2 (1967), pp. 260–269.

[35] Evgeniui Borisovich Dynkin. “Markov processes.” In: Markov Pro-
cesses. Springer, 1965, pp. 77–104.

87

Paper III:
SD-HDFS: Secure Deletion
in Hadoop Distributed File
System

89

90

SD-HDFS: Secure Deletion in Hadoop Dis-
tributed File System

B. Agrawal1, R. Hansen2, C. Rong1, T. Wiktorski1

1 Department of Electrical Engineering and Computer Science, University of

Stavanger
2 Department of Computer and Information Technology, Purdue University, West

Lafayette, IN, USA

Abstract:

Sensitive information that is stored in Hadoop clusters can po-
tentially be retrieved without permission or access granted. In
addition, the ability to recover deleted data from Hadoop clusters
represents a major security threat. Hadoop clusters are used to
manage large amounts of data both within and outside of organiza-
tions. As a result, it has become important to be able to locate and
remove data effectively and efficiently. In this paper, we propose
Secure Delete, a holistic framework that propagates file information
to the block management layer via an auxiliary communication
path. The framework tracks down undeleted data blocks and mod-
ifies the normal deletion operation in the Hadoop Distributed File
System (HDFS). We introduce CheckerNode, which generates a
summary report from all DataNodes and compares the block infor-
mation with the metadata from the NameNode. If the metadata do
not contain the entries for the data blocks, unsynchronized blocks
are automatically deleted. However, deleted data could still be
recovered using digital forensics tools. We also describe a novel
secure deletion technique in HDFS that generates a random pattern
and writes multiple times to the disk location of the data block.

91

1. Introduction Paper III

1 Introduction

The emergence of cloud computing paradigm has made individuals and
organizations are moving towards cloud storage systems; this move is
motivated by benefits such as shared storage, computation, and services
transparently among a massive number of users. Many users and enterprise
applications today generates and needs to handle huge volumes of data
on a regular basis, and are appropriately referred to as data intensive
applications. However, to perform data-intensive computation, two major
pre-conditions need to be satisfied: (i) the application should run in a
parallel algorithm to utilize the available resources; and (ii) there should
be an appropriate parallel runtime support to implement it. There are
several cloud technologies such as Hadoop8, and Spark9 that can perform
a data-intensive computation.

Hadoop [14] is an open-source framework that implements the MapRe-
duce [20] parallel programming model. The Hadoop framework is composed
of a MapReduce engine and Hadoop Distributed File System (HDFS). The
HDFS manages storage resources across a Hadoop cluster by providing
global access to any file [19]. HDFS is implemented by two services: Na-
meNode and DataNodes. The NameNode is responsible for maintaining
the HDFS directory tree and metadata of all files. Clients contact the
NameNode in order to perform common file system operations, such as
open, close, rename, and delete. The NameNode does not store actual
data itself, but rather maintains a mapping between HDFS filename, a
list of blocks and the DataNode(s) on which these blocks are stored.

The scaling of storage systems involves the manipulation of thousands
of computation and storage nodes, which leads to a higher probability of
node failure. Hadoop has become a hugely popular platform for large-scale
data analysis. This popularity poses even greater demands when it comes
to scalability and functionality and has revealed an essential architectural
limitation and challenges of its underlying file system. To provide better
reliability and availability, the traditional design of HDFS replicates each
data block into three copies to protect against node failures. While this
mechanism provides better availability than keeping a single copy of data,
it suffers issues during deletion of data in dead nodes [2]. For example:
when a user sends the delete command to remove data and the data is
replicated on three different nodes, but the data is not completely deleted

8https://hadoop.apache.org/
9http://spark.apache.org/

92

Paper III 1. Introduction

though if one of the nodes is dead, this can then result in major data
spillage of sensitive information [7]. Even though HDFS delete command
confirms data is deleted successfully, there can be some undeleted blocks
or traces of data which can lead to major security threats. In this paper,
we introduce the checkerNode, that collects a summary report from all
the DataNodes and compares the block information with the metadata
information in the NameNode. If the block information does not exist in
the metadata, the block is automatically deleted, and the notification is
sent to the user.

In HDFS, the data can be recovered from the HDFS deletion command
using forensic tools. Most of the users are not aware that after deleting
a file it can still be recovered. There are many forensic tools available
which can recover deleted data stored on Linux, Windows, and Macintosh
machines. The simple solution for deletion is to overwrite the memory
segment with a random pattern. However, overwritten data can still be
recovered using techniques like Magnetic force microscopy (MFM) and
scanning tunneling microscopy (STM) [29]. Hence multiple processes of
overwriting are needed. However, a number of overwrite processes involve
with an extra I/O overhead.

When a user uploads the data to HDFS, the underlying storage layers
essentially keep the data immutable, only allowing concurrent appends.
While this method exploits workflow parallelism to a certain degree, it
does not provide a true file system capability e.g., support for users to
randomly, update the contents of the files. Since HDFS does not support
in-place updates, many applications that are write-intensive and require
file modifications need to overwrite all the file contents, even if very small
changes were made. Therefore, changing any file content requires recreating
whole data blocks, which effectively increases the overall write and update
performance of the system. However, Finger [9] provides novel erasure
coding scheme by breaking the large block size (64 or 128 MB) into smaller
chunks and also added an in-place update. It is designed to mitigate
extra reads when performing erasure coding on a large block update and
maintains the minimal metadata size. HDFS-RAID [6] developed by
Facebook, reduces the disk I/O operation. However, it has a computation
overhead due to encoding and decoding process on the sub-block granularity
and does not encounter any extra I/O regardless of the block size.

Currently, there is no component in Hadoop that could overwrite the
data blocks with a random pattern for complete deletion of data [10].
Secure Deletion is the technique where data is deleted from a system in

93

1. Introduction Paper III

such a manner that the system is not able to recover the deleted data. In
this paper, we introduce a overwrite technique in a block with a random
pattern of 1s and 0s.

1.1 Our Contribution

The existing approach for data deletion in HDFS can lead to data leakage
in two ways: undeleted blocks due to node failure and data sniffing using
forensic tools. In this paper, we propose an improved data deletion frame-
work for HDFS. Through an additional component called checkerNode
which ensure that all blocks are deleted in the case where it is impossible to
delete, the component provides detailed reports on hardware components
that might contain sensitive data. Further, we extend the deletion process
by physically locating each copy of the block and overwriting it to prevent
data spillage using forensic tools.

1.2 Related Work

Storing files using HDFS as an underlying platform for cloud storage has
been of significant interest in recent years. This typically follows one of
two possible approaches: extending Hadoop’s built-in FileSystem abstract
class with shim code that supports the distributed file system, or using
built-in Java APIs to expose the distributed file system. HFAA (Hadoop
Filesystem Agnostic API) [15] provides Hadoop to integrate with any
distributed file system over TCP sockets. This API allows the user to
integrate any file system with Hadoop without knowing details about it.

There are several research projects carried out on secure deletion in the
normal file system, but none of these address the issue of secure deletion in a
distributed file system. Bauer et al. [28] used an asynchronous overwriting
process and ultimately provided a far more usable and complete secure
deletion facility in Linux file system Ext3. Systematization of Knowledge
(SoK) [11] showed the existing approach in terms of its interface to a
physical medium. It shows user-level approaches are generally limited and
cannot securely delete data in all cases. However, it proves overwriting
can be used as a user-space approach. Reardon et al. [18] provided three
approaches for secure deletion on log-structured file systems; purging,
ballooning, and zero overwriting. Out of the three approaches, zero
overwriting guarantees immediate secure deletion. Sun et al. [22] proposed
a hybrid model of secure deletion in flash memory using a technique of
zero overwriting and block cleaning. However, the hybrid model consists

94

Paper III 2. Background

of block cleaning that involves moving a block from one memory location
to another. This can be an expensive operation for moving large block
size. Lee et al. [21] modified YAFFS, a log-structured file system for
NAND flash, to handle secure file deletion. The modified YAFFS encrypts
files and stores each file’s key along with its metadata. Whenever a file is
deleted, its key is erased, and the encrypted data blocks remain. Joukov
et al. [26] introduced Purgefs techniques in a file system which provide
better performance for secure deletion. TrueErase [13] is a secure-deletion
framework that deletes sensitive data from the electronic storage. True
deletion is a compatible full-storage-data-path framework that performs
per file secure deletion and works with common file systems and solid-state
storage. Daniel et al. [17] used Kepler+Hadoop framework to presents a
data model that is capable of capturing provenance inside a MapReduce
job.

All these approaches provide a solution for secure deletion in Linux
file system or Windows, where the most common approaches used for
secure deletion is overwriting the kernel metadata and memory location.
In 1996, Gutmann [29] proved that simple overwriting does not delete
the data completely. The data can be recovered using Magnetic force
microscopy (MFM) and scanning tunneling microscopy (STM) techniques.
Gutmann proved that for complete deletion, it requires 35 passes of an
overwriting process. However, in 2006 NIST Special Publication 800-88 [25]
showed that most of the today’s media can be effectively cleared by a single
overwrite process. We found that existing solutions are either inconvenient,
incompetent, or insecure. We have designed secure deletion in Hadoop as
a file system extension to Hadoop that transparently overwrites files on
the per-delete basis.

1.3 Paper Structure

Section II gives an outline for this paper. Section III introduces the design
and approach of our method. Section IV evaluates our approach and
presents the results. Section V concludes the paper.

2 Background

2.1 Hadoop:

Hadoop [14] is an open-source framework for distributed storage and data-
intensive processing, first developed by Yahoo!. It has two core projects:

95

2. Background Paper III

Hadoop Distributed File System (HDFS) and MapReduce programming
model [20]. HDFS is a distributed file system that splits and stores data
on nodes throughout a cluster, with a number of replicas. It provides an
extremely reliable, fault-tolerant, consistent, efficient and cost-effective
way to store a large amount of data. The MapReduce model consists of
two key functions: Mapper and Reducer. The Mapper processes input
data splits in parallel through different map tasks and then sends sorted,
shuffled outputs to the Reducers that in turn group and process them
using a reduce task for each group.

Disk

Operating System (Linux)

Java Virtual Machine

FileSystem(HDFS Client)

DataNode(TaskTracker)

Application(s)

HDFS Daemon

Disk

DataNode

Figure 1: Example of HDFS cluster Node.

Hadoop uses HDFS for reliable storage. When a file is written in HDFS,
it is divided into blocks of a fixed size. The client first contacts the Na-
meNode, which gets the list of DataNodes where actual data can be stored.
The data blocks are distributed across the Hadoop cluster. Figure 1 shows
the architecture of the Hadoop cluster node used for both computation and
storage. The MapReduce engine (running inside a Java virtual machine)
executes the user application. When the application reads or writes data,
requests are passed through the Hadoop org.apache.hadoop.fs.FileSystem
class that provides a standard interface for distributed file systems, includ-
ing the default HDFS. An HDFS client is then responsible for retrieving
data from the distributed file system by contacting a DataNode. In the
common case, the DataNode that is running on the same node requires
no external network traffic. The DataNode, also running inside a Java

96

Paper III 2. Background

virtual machine, accesses the data stored on local disk using normal file
I/O functions.

The Hadoop frameworks consist of two key component: the MapReduce
and the Hadoop Distributed File System (HDFS). The HDFS system
consists of the NameNode and the DataNode. The NameNode is the
master node on which the job tracker runs. It contains the metadata
(information about data blocks stored in DataNodes - the location, size
of the file, etc.). It maintains and manages the data blocks, which are
present on the DataNodes, where the actual data is stored. The DataNode
runs three main types of daemon: Read Block, Write Block, and Write-
Replicated Block. The NameNode and the DataNode maintain their own
logging format. Each node records events/activities related to reading,
writing, and the replication of HDFS data blocks.

DataNode3

Storage

DataNode2DataNode1

Block Management

NS1 NS2 NSn

B
lo

c
k
 S

to
ra

g
e

N
a
m

e
s
p

a
c
e

Figure 2: HDFS architecture.

The NameNode maintain the directory tree of all files in the file system
and keeps track of the data stored across the cluster. The HDFS clients
contact the NameNode in order to perform common file system operations,
such as open, close, rename, and delete. The NameNode does not store
data itself, but rather maintains a mapping between HDFS filename, a list
of blocks in the file, and the DataNode(s) on which those blocks are stored.
Each DataNode stores data as HDFS blocks (64MB to 512MB chunks of
a single logical file). Each data block is saved as a separate file in the
DataNode’s local file system, which uses a native file system like Ext4. The
data blocks are created or destroyed on DataNodes at the request of the
NameNode, which validates and processes requests from clients. Although

97

2. Background Paper III

NameNodes manage the namespace, clients communicate directly with
DataNodes to read or write data at the HDFS block level.

Figure 2 shows the architecture of a Hadoop cluster used for storage.
The user application requests Hadoop org.apache.hadoop.fs.FileSystem
class for reading and writing data. The NameNode decides where to put
each block using the block placement policy. The NameNode stores the
file system namespace in memory for fast access. The DataNodes store the
actual file blocks and are responsible for serving read and write requests
from clients.

NameNode

…

editlog
fsimage

User

add “test.txt”

test.txt

Figure 3: Namenode updates editlog and fsimage.

The NameNode metadata represents the structure of HDFS directories
and files in a tree. It also includes the various attributes of directories and
files, such as ownership, permissions, quotas, and replication factor. HDFS
metadata is divided into two categories of files as shown in figure 3 fsimage:
A fsimage file is an image that contains the complete state of the file system
in HDFS at a point in time. Every file system modification is assigned a
unique, monotonically increasing transaction ID. editlog: âĂŞ An edits
file is a log that maintains changes (file creation, deletion or modification)
that were made in the file system after the most recent fsimage. Metadata
contains all the storage level (block management) information. These
documents include information related to the file’s block locations on the
DataNodes. In addition to keeping track of data blocks, the NameNode
manages information related to the data provenance.

The HDFS is designed to provide high sequential access throughput
and fault tolerant storage on low-cost commodity hardware. HDFS aims
to support WORM (write-once-read-many) type of workloads with large
datasets in contrast with traditional POSIX (Portable Operating System
Interface) distributed file systems. Distributed file systems tend to provide
similar consistency as a POSIX model [12]. However, HDFS provide

98

Paper III 3. Approach

a consistency level weaker than POSIX. For example, HDFS does not
provide a solution to append and update on existing blocks. Similar to
POSIX file systems, HDFS represents both files and directories as inodes
in the metadata. Directory inodes contain a list of files inodes, and file
inodes consist of a number of blocks stored in different DataNodes. A
block is replicated on a number of different DataNodes (default=3).

2.2 Apache Common:

Apache Common10 is an open source project by Apache Software Founda-
tion. It consists of a set of common utility libraries needed by the Hadoop
framework and modules. It has native shared libraries that are used for
common I/O operations and is include in Java implementations for I/O
utilities, logging, compression codecs, and error detection. It also includes
interfaces and tools for configuration, authentication, data confidential-
ity, service-level authorization, and the Hadoop Key Management Server
(KMS).

2.3 Fourth Extended Filesystem (Ext4):

Ext4 is the evolution of Ext3. It is a journaling file system for Linux.
It provides backward compatibility extensions to Ext3, and it divides
a storage media into an array of logical blocks to reduce bookkeeping
overhead and to increase throughput by forcing larger transfer sizes. It
supports large file system volume with size up to 1 exbibyte (EiB) and
files with size up to 16 tebibytes (TiB).

3 Approach

We introduce secure deletion, a holistic framework that propagates file
information to the block management layer through a communication path
so that file deletion can be honored throughout the data path. Our system
includes the following steps:

• The HDFS client specifies which files or directories are to be deleted.

• Tracking the information across different storage layers via a block
management module and checkerNode.

10https://commons.apache.org/

99

3. Approach Paper III

• Enforcing secure deletion.

• Exploiting data-block consistency between different DataNodes and
metadata for verification.

NameNode

DataNode 1 DataNode 2 DataNode 3 DataNode 4

CheckerNode
metadata

s
u

m
m

a
ry

 r
e
p

o
rt

summary report

Figure 4: CheckerNode checks periodically with NameNode and DataNode.

Our framework consists of the CheckerNode that interacts with the
NameNode at periodic intervals. They are set at a default of 2 minutes,
but the user can reconfigure it. Figure 4, consists of the CheckerNode that
receives summary reports from the DataNodes and compares the block
stored in the DataNodes with the metadata in the NameNodes. If there a
mismatch block in a summary report when compared with metadata, the
CheckerNode sends the delete command to delete the inconsistent block
and at the same time it informs the user about the hardware component
containing that block.

In figure 5, the user stored a file Test.txt of size 248MB. The block
size on each DataNodes is configured to be 128MB, so the file test.txt is
stored in two blocks; B1 and B2 in three DataNodes (D1, D2, D3). The
NameNode contains the block storage information. When the user sends
the secureDelete command, the file block is overwritten and replaced with
a random pattern and the memory location is released. In the meantime,
checkerNode daemon is called, and it checks for inconsistent blocks present
in any of the DataNodes. In figure 5, DataNode 3 consists of blocks B4
and B5, whose entries are not present in the metadata. The checkerNode
gets all the information from DataNodes, and it finds blocks B4 and B5 are

100

Paper III 3. Approach

not present in the metadata. The checkerNode sends a delete command
(delete[B4,B5]) to delete the block from the DataNode.

NameNode

B1 B2

DataNode 1

B1 B2

DataNode 2

B1 B2

B4 B5

DataNode 3

Block1 DN1,DN2,DN3

Block2 DN1,DN2,DN3

Metadata

FSClient

SecureDelete

Delete(B
1,B

2)

Delete(B1,B2)

B1

Test.txt 248MB

B2 Block2 120MB

Block1 128MB

checkerNode

report(B1,B2,B4,B5

SD Daemon SD Daemon

S
D

 D
a

e
m

o
n

Figure 5: Secure Deletion command sent through HDFS client.

The chunk of blocks are stored as a file in the file system, and the data
content of a file is deleted via its truncate function. This process involves
updating the inode to set the file size to zero, removing the pointers to
data blocks, overwriting the data blocks with a random pattern and freeing
up the blocks for reuse. Multiple rounds of truncation may be required to
securely delete the contents of a large file as suggested by Gutmann [29].
When a file is deleted in file systems including HDFS, only the reference
to that data, called a pointer, is deleted but the data itself remains. In
the FAT file system, for example, when a file is deleted the files directory
entry is changed to reflect that the space occupied by data, and the data
occupies is then unallocated. The first character of a file name is switched
with a marker. The actual file data is still left unchanged. In the file
system, the data traces are still present with an exception of overwriting
with a random data [27]. Similarly, in HDFS, when a file is deleted, only
the pointer to the file on the DataNode is deleted. The data remains
unchanged in the memory location of the DataNode until that data is

101

3. Approach Paper III

overwritten.
Our approach for secure deletion is tools open the file from the user-

space and overwrite its contents with a random pattern (e.g., all 1s and 0s
or all zeros). The file is stored as a chunk of blocks in HDFS. Later, when
the file is unlinked, only the content of most recent version is stored on the
disk. To combat analog remnants, overwriting can be performed multiple
times as proposed by Gutmann [29] but with at least one pass of random
data. The overwrite function will update the edit logs and fs image
information in the NameNodes. It overwrites the block attributes, such as
the file’s size, and access times. The framework relies on the NameNode
metadata: each file block is stored at known locations pointed by the
NameNode metadata, and when the file block is updated, all older versions
are replaced with the new version. If the NameNode metadata fails to
point the actual block location, the checkerNode will fix that issue.

HDFS

EXT 3/4

User Space

Kernel

root ext4_inodeheader

index nodeextent
index

disk blocks

Figure 6: Structure of ext4 inode which stores hdfs data blocks.

Each block of data is treated as a separate file in the file system. It is
stored above Ext4[24] in the latest version of Linux as shown in Figure 6.
It uses an indirect block to index data blocks. Ext4 needs to pass through
an extra level of indirect nodes to access data blocks as shown in Figure
6. Each HDFS data block is treated as a normal file by Ext4 and it is
represented by inode. In a nutshell, a file’s inode number can be found
using ls -i command. An inode is the data structure that describes the

102

Paper III 3. Approach

metadata of files and is composed of several fields such as ownership, size,
modify time, mode, link count and data block pointers. When a user calls
secureDelete command, the overwrite daemon is called. The overwrite
function traces the location of the files where all the blocks are stored.
The larger files are represented by the chunk of blocks located at different
DataNodes. Each DataNode has a secure delete daemon which is triggered
by a checkerNode.

OXO1 OXO1

OXOO OXO1

OXOO OXO0

OXO1 OXO1

OXFF

OXFF

OXFF

OXFF

OXFF

Overwrite DeleteData Blocks

File

Figure 7: Process of overwrite and delete method.

Figure 7 shows the process of 1s and 0s overwrite and deletion in the
memory location of the blocks. Overwrite is a deletion method that
overwrites memory with the combination of 0x00 and 0x01 so that the
original data can be securely deleted. In this paper, we introduced the
model in which the whole block of data is overwritten and deleted. In
contrast, entire data is deleted from the block. However, if some valid
data remains in the block and is useful for other operations the data needs
to move to another block, so it does not need additional computation
(read/write). In order to minimize cost disk I/O, the entire blocks are
overwritten, and the memory locations are released.

Figure 8 shows secure deletion process in Ext4. The client invokes
getblockLocation(file) to get all the block locations of the files through
NameNode. With the help of Java API, the client creates a TCP connection
to the DataNodes to run overwrite daemon. Now, the daemon gets inode
information and underlying block location from each block. A single data
block is divided into smaller blocks whose metadata is maintained by the
inode. The daemon opens the block in overwrite mode and loads the
block with a random pattern of 1s and 0s. After the overwriting operation
is completed, the daemon deletes command to release all the memory
location occupied by the data blocks.

103

4. Result Paper III

NameNode
Block Mgmt.checkerNode Dameon

getBlockLocation(file)

DN1(B1), DN2(B1)

OpenBlock(B1)

Ext4(Inode) block in sectors

Deleted(B1)

UpdateInode

Disk

OpenBlock(B1)

UpdateRandom(b1,b2,b3)

Success

DataNode1
DataNode2

DataNode3

Locate(b1,b2,b3)

Figure 8: The sequence diagram shows how the update process is done in the data
blocks of ext4 file system.

4 Result

Setup: Our cluster is comprised of 4 nodes with Ubuntu 14.04 Trusty Tahr,
one node each for Namenode, and Secondary Namenode. The remaining
3 nodes act as DataNodes, and Task Trackers. All nodes have an Intel
two-core 2.13GHz processor, 2 GB of DDR-2 RAM, 160 GigaBytes storage.
Experiments were conducted using Hadoop-2.7.1 Apache releases. Our
default HDFS configuration had a block size of 128 MB and a replication
factor of 2.

In this section, we highlight the inconsistency issue during data deletion
in information security assessment for HDFS. Our approach provides a
plugin for HDFS, which is developed with several test scenarios that allow
us to strategically track undeleted data within HDFS to investigate vulner-
ability and risk assessment. In this section, we test our data consistency

104

Paper III 4. Result

in all DataNodes and allow users to delete sensitive information from
non-classified Hadoop Distributed File System (HDFS).

4.1 Data Consistency

At the system storage level, the NameNode provides commands that allow
us to collect the location of file blocks in the system and their ID from
its system log files. But there is no such command in Hadoop that can
provide a report of undeleted data. Therefore, we introduced checkerNode
that contains information about undeleted data traces and deletes those
unsynchronized data. The checkerNode also helps in secureDeletion by
establishing TCP connection with different DataNodes and executing a
delete daemon in each DataNode.

Figure 9: CheckerNode report with 5 blocks still present in one of the DataNode after
deletion.

For example, HDFS client uploads 580 MB of data in the cluster, which
has a replication factor of 2 and block size of 128MB. The total number
of blocks used to store the data is 5. Our cluster has 3 DataNodes; DN1,
DN2, and DN3. The DataNodes DN1 and DN2 are used to store all
the blocks and its replication. After a while, DN2 is down. Now, data
is replicated in DN3. A user sends the delete command. The data is
deleted from node DN1 and DN3 along with its metadata information.
After an hour, DN2 is back, and it contains the actual data blocks. The
metadata in the NameNode does not have the information about the
file anymore, so it is treated as deleted. Perhaps, still sensitive data is
present in DataNode DN2 which is tracked by checkerNode in Figure 9.

105

4. Result Paper III

The secure deletion framework runs the checkerNode daemon which now
deletes this unsynchronized data in DataNode DN2. When the user sends
delete command, the checkerNode sends the report that the data is still
in the DN2.

4.2 Secure Deletion

Several steps are taken for the analysis phase to prepare the forensic
environment. The first step is to attach a network-attached storage (NAS),
or other large-scale storage solutions such as a cloud environment. The
analysis is performed on the logical files or forensic images, with the focus
being on extracting and collecting metadata information for different blocks.
The method used for analyzing HDFS data is data carving techniques
[8]. Data carving techniques frequently occur in a digital investigation
when unallocated file system space is analyzed to extract files. The files
are ’carved’ from the unallocated space using file type-specific header and
footer values. File system structures are not used during the process [23].
Simply stated, file carving is the process of extracting the strips of data
from a greater storage space. Digital forensics examiners commonly look
for data remnants in unallocated file system space. Beek et al. [16] wrote
a white paper explaining data carving concepts in which it referred to
several data carving tools were referred to. In the paper, Beek et al. also
explained the difference between data carving and data recovery. Data
recovery is the carving of data based on the file system structure, which
would not be useful in a system format. Further, the file system used to
retrieve data is not important to the data retrieval process. In the case
examined by our research, we are dependent on the HDFS to identify the
nodes that need to be carved.

The framework consists of commands that are used by the client for
tracking the distributed undeleted blocks and secure deletion of the content
in HDFS and are listed in table 4.1:

The NameNode is used to locate where and how a file is distributed
within the DataNodes. There are other related components involved in
deleting the sensitive information such as the trash folder and fs image
which captures the state of data stored within the DataNodes. Using
forensic tools such as Forensic ToolKit (FTK) [1], EnCase [5] and Autopsy
[3], the deleted data can be recovered as shown in Figure 10.

When a file is stored in HDFS, the NameNode maintains the metadata
and the DataNode stores the actual data blocks. The disk image of each
DataNode is created using the dd command in Linux. The single data

106

Paper III 4. Result

Table 4.1: List of commands for secure deletion.

Command Info

getBlockLocation

blk1073751858
Host [datanode1, datanode2,

datanode3]

getUndeletedBlock
blk1073751851 in datanode3
blk1073751852 in datanode1

rmr deleted blk1073751858

secureDelete
Overwrite blk1073751858
Deleted blk1073751858

randPattern 1010101010111100110101

Put
Added blk1073751858 len=8615342 repl=3

[datanode1, datanode2, datanode3]

blocks in each DataNode is stored into multiple blocks where the metadata
is maintained by inode. Figure 10 shows the block blk 107374189 which
is stored in different subblocks whose information is maintained by inode
(7925760,7925761,7925762,7925763, and 7925764) in the disk sectors.
The process for extracting HDFS data from a forensic image has several
steps:

• Identify the location of the data in the DataNode.

• Locate the blocks and files in the operating system.

• Analyze the data blocks to identify the relevant files and its content.

• Extract the data into a file for analysis.

The location of the data in the DataNode is located in hdfs-site.xml file.
In the Autopsy tool, we collected the image of the disk and analyzed it.

107

4. Result Paper III

Figure 10: Autopsy shows the deleted block with its associated inode and subblocks
information in Ext4 filesystem.

Figure 11: Autopsy shows all the deleted blocks from one of the DataNodes.

The Autopsy tool has capabilities to allow raw disk images to be loaded
and processed as a normal file system.. The tool allows data blocks to be

108

Paper III 4. Result

recovered from the disk image in two ways: 1) navigate to the standard
directories where HDFS data is stored, 2) run a keyword search for hdfs-
site.xml and sort the results by filename for that file. The entry with the
red color in Figure 11 recovers the deleted data block from DataNode
1. The files with the .meta file extension contains checksum information
that is used by HDFS to verify the integrity of data blocks. The files
without an extension are the actual data blocks, which contain sensitive
information. The next step is to analyze the content of the files using a
hex editor.

Figure 12: Autopsy recovers the deleted blocks from one of the DataNodes.

The secureDelete command issues overwrite and delete commands. The
first phase of the secure delete command is an overwrite process, the
framework gets all the block locations from the NameNode metadata.
Now, it opens the block in write mode using the FSDataInputStream
pointer. The pointer is moved to the beginning of the file and the actual
content of the file is replaced with a random pattern of 1s and 0s. Figure
12 shows that the actual content of test.txt is replaced with 1s and 0s.

4.3 Execution Time

In this section, we analyze the data deletion costs of the HDFS using
techniques like overwriting and deleting. We used a random pattern of
1s and 0s for an overwriting method. The cost of overwriting is slightly
higher than of an ordinary write process in HDFS because the blocks need
to be relocated using metadata information from the NameNode. As a
result, the data deletion cost of multiple blocks can be written as:

Costw = NdeletedBlocks ∗ (Tw + Tmetar) (4.1)

Where, NdeletedBlocks is the number of blocks deleted, Tw is the overwrite
time for the blocks, and Tmetar is read time of the metadata from the

109

4. Result Paper III

NameNode. The equation 4.1 indicates the cost of overwriting is directly
proportional to the number of blocks to be deleted. But writing and reading
time depends on the commodity hardware and network throughput. Let
us assume that K is the constant for hardware and network throughput;
the final equation is:

Costw = K ∗ (NdeletedBlocks ∗ (Tw + Tmetar)) (4.2)

Equation 4.2 refers to execution time in each DataNodes. Our method
follows a write-then-erase technique. The cost of overwriting also depends
on the size of blocks and the number of overwrites. The cost of deletion is
indirectly proportional to the block size. Equation 4.2 can be written as:

Costw = K ∗Npass ∗ (NdeletedBlocks ∗ (Tw + Tmetar)) (4.3)

Costw ∝ (1/Sblocks) where, Sblocks is size of blocks (64-512 MB) depend on
configuration and Npass number of overwrite process. Figure 13 indicates
the block size has very less effect on the execution time and thus in cost.

Equation 4.3 depends on the distribution of the data as well. Let
Tcap be the total capacity of a disk in a node and Tused be the total
used space. Therefore the ideal storage on each volume/disk should be
Istorage = Tcap/Tused. The volume of data density is the difference between
the ideal storage and the current DFS used ratio, in other words volume
data density for one node is DDvolume = Istorage − dfsUsedRatio, where
DDvolume is volume of data density. A positive value of DDvolume indicates
that the disk is underutilized and a negative indicates that the disk is
over-utilized. Now, we can calculate the data distribution around the
data center. This is done by computing nodes with maximum skew from
Istorage values, for which we sum up all the absolute values of DDvolume.
The node data density is calculated as: nodeDD =

∑
diεDDvolume(I) |di|

[4], where nodeDD is the node data density. Lower nodeDD indicates a
uniform distributed and higher values indicate a more skewed distribution.
Now, the total cost considering the data distribution around the node
looks as follows:

Costw =
K ∗Npass ∗ (NdeletedBlocks ∗ (Tw + Tmetar))∑

diεDDvolume(I) |di|
(4.4)

In Figure 13, we assumed the number of overwrite process was 1 i.e
(Npass = 1). Larger blocks offer several advantages over smaller blocks.
It reduces the number of interactions with NameNode and also reduces

110

Paper III 5. Conclusion

a size of metadata that needs to be stored in the NameNode. It reduces
extra network overheads by keeping a persistent TCP connection to the
DataNode. In Figure 13, the execution time for writing and deleting the
larger blocks is almost similar to deleting smaller blocks. However, HDFS
blocks are larger in comparison to disk blocks, because they minimize the
cost of seeks. Thus, in our case, all the interaction of deletion is done
through a checkerNode. The checkerNode sends the delete command, and
the rest is handled by overwriting daemon in each node. The overwrite
daemon reads the metadata from inodes. It does not need to make a
connection with NameNode or checkerNode. Thus, it reduces the extra
network overhead and boosts the performance of the deletion operation.

0

10

20

30

40

0.5 1 1.5 2
Data size in GB

E
xe

cu
tio

n
tim

e
in

 m
ill

is
ec

on
ds

BlockSize

128MB

512MB

64MB

Figure 13: Secure deletion execution time: Block size does not has much effect in
execution time.

5 Conclusion

Secure deletion is an important technique to prevent data leakage. People
are unaware of the fact that data can be recovered even after they are

111

References Paper III

deleted from the storage device. However, we showed that data can be
recovered using digital forensic tools.

We proposed a hybrid scheme of overwriting and deleting for secure
deletion in HDFS. The default overwrite operation in Hadoop does not
overwrite, it simply creates a new data block which writes data to a new
location while the original data still exists. There is no actual overwrite
method existing in Hadoop that could overwrite the memory location. In
our proposed approach, we overwrote the memory location with a random
pattern of 1s and 0s and released the memory location after the operation
so that memory could be reused. We also introduced a checkerNode that
tracks undeleted data blocks and deletes it. The framework provides the
location of the undeleted blocks and failure components where the block
is stored. Further, our framework allows Hadoop to integrate more easily
into existing high-performance computing environments, where alternate
distributed file systems are already present.

References

[1] AccessData. Forensic Toolkit (FTK). http://accessdata.com/
solutions/digital-forensics/forensic-toolkit-ftk. [Online;
accessed 10-Dec-2015].

[2] Cloudera Engineering Blog. Introduction to HDFS Erasure Coding
in Apache Hadoop. http://blog.cloudera.com/blog/2015/09/
introduction-to-hdfs-erasure-coding-in-apache-hadoop/.
[Online; accessed 1-Nov-2015].

[3] Basis Technology Corp. Autopsy, a graphical interface to The Sleuth
Kit. http://accessdata.com/solutions/digital-forensics/
forensic-toolkit-ftk. [Online; accessed 5-Dec-2015].

[4] Jira issue: HDFS-1312. Re-balance disks within a Datanode. https://
issues.apache.org/jira/browse/HDFS-1312/. [Online; accessed
21-Dec-2015].

[5] Guidance Software. EnCase Forensic, Pasadena, California. https:
//www2.guidancesoftware.com/products/Pages/encase-forensic/

overview.aspx. [Online; accessed 10-Dec-2015].

[6] Hairong Kuang Weiyan Wang. Saving capacity with HDFS RAID.
https://code.facebook.com/posts/536638663113101/saving-

capacity-with-hdfs-raid/. [Online; accessed 15-Nov-2015].

112

http://accessdata.com/solutions/digital-forensics/forensic-toolkit-ftk
http://accessdata.com/solutions/digital-forensics/forensic-toolkit-ftk
http://blog.cloudera.com/blog/2015/09/introduction-to-hdfs-erasure-coding-in-apache-hadoop/
http://blog.cloudera.com/blog/2015/09/introduction-to-hdfs-erasure-coding-in-apache-hadoop/
http://accessdata.com/solutions/digital-forensics/forensic-toolkit-ftk
http://accessdata.com/solutions/digital-forensics/forensic-toolkit-ftk
https://issues.apache.org/jira/browse/HDFS-1312/
https://issues.apache.org/jira/browse/HDFS-1312/
https://www2.guidancesoftware.com/products/Pages/encase-forensic/overview.aspx
https://www2.guidancesoftware.com/products/Pages/encase-forensic/overview.aspx
https://www2.guidancesoftware.com/products/Pages/encase-forensic/overview.aspx
https://code.facebook.com/posts/536638663113101/saving-capacity-with-hdfs-raid/
https://code.facebook.com/posts/536638663113101/saving-capacity-with-hdfs-raid/

Paper III References

[7] Oluwatosin Alabi, Joe Beckman, Melissa Dark, and John Springer.
“Toward a Data Spillage Prevention Process in Hadoop using Data
Provenance.” In: Proceedings of the 2015 Workshop on Changing
Landscapes in HPC Security. ACM. 2015, pp. 9–13.

[8] Joe Sremack. Big Data Forensics–Learning Hadoop Investigations.
Packt Publishing Ltd, 2015.

[9] Pradeep Subedi, Ping Huang, Benjamin Young, and Xubin He. “FIN-
GER: A novel erasure coding scheme using fine granularity blocks to
improve Hadoop write and update performance.” In: Networking, Ar-
chitecture and Storage (NAS), 2015 IEEE International Conference
on. IEEE. 2015, pp. 255–264.

[10] George Trujillo, Charles Kim, Steve Jones, Rommel Garcia, and
Justin Murray. Virtualizing Hadoop: How to Install, Deploy, and
Optimize Hadoop in a Virtualized Architecture. en. VMWare Press,
July 2015. isbn: 9780133811131.

[11] Joel Reardon, David Basin, and Srdjan Capkun. “Sok: Secure data
deletion.” In: Security and Privacy (SP), 2013 IEEE Symposium on.
IEEE. 2013, pp. 301–315.

[12] José Valerio, Pierre Sutra, Étienne Rivière, and Pascal Felber.“Evalu-
ating the Price of Consistency in Distributed File Storage Services.”
In: Distributed Applications and Interoperable Systems. Springer.
2013, pp. 141–154.

[13] Sarah Diesburg, Christopher Meyers, Mark Stanovich, Michael Mitchell,
Justin Marshall, Julia Gould, An-I Andy Wang, and Geoff Kuen-
ning. “TrueErase: Per-file secure deletion for the storage data path.”
In: Proceedings of the 28th Annual Computer Security Applications
Conference. ACM. 2012, pp. 439–448.

[14] Tom White. Hadoop: The definitive guide. ” O’Reilly Media, Inc.”,
2012.

[15] Adam Yee and Jeffrey Shafer. “Hfaa: a generic socket api for hadoop
file systems.” In: Proceedings of the 2nd Workshop on Architectures
and Systems for Big Data. ACM. 2012, pp. 15–20.

[16] Christiaan Beek. “Introduction to file carving.” In: White paper.
McAfee (2011).

113

References Paper III

[17] Daniel Crawl, Jianwu Wang, and Ilkay Altintas. “Provenance for
MapReduce-based Data-intensive Workflows.” In: Proceedings of
the 6th Workshop on Workflows in Support of Large-scale Science.
WORKS ’11. Seattle, Washington, USA: ACM, 2011, pp. 21–30.
isbn: 978-1-4503-1100-7. doi: 10.1145/2110497.2110501. url:
http://doi.acm.org/10.1145/2110497.2110501.

[18] Joel Reardon, Claudio Marforio, Srdjan Capkun, and David Basin.
“Secure deletion on log-structured file systems.” In: arXiv preprint
arXiv:1106.0917 (2011).

[19] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. “The hadoop distributed file system.” In: Mass Storage
Systems and Technologies (MSST), 2010 IEEE 26th Symposium on.
IEEE. 2010, pp. 1–10.

[20] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data
processing on large clusters.” In: Communications of the ACM 51.1
(2008), pp. 107–113.

[21] Jaeheung Lee, Junyoung Heo, Yookun Cho, Jiman Hong, and Sung Y
Shin. “Secure deletion for NAND flash file system.” In: Proceedings
of the 2008 ACM symposium on Applied computing. ACM. 2008,
pp. 1710–1714.

[22] Kyoungmoon Sun, Jongmoo Choi, Donghee Lee, and Sam H Noh.
“Models and design of an adaptive hybrid scheme for secure deletion
of data in consumer electronics.” In: Consumer Electronics, IEEE
Transactions on 54.1 (2008), pp. 100–104.

[23] Simson L Garfinkel. “Carving contiguous and fragmented files with
fast object validation.” In: digital investigation 4 (2007), pp. 2–12.

[24] Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Andreas
Dilger, Alex Tomas, and Laurent Vivier. “The new ext4 filesys-
tem: current status and future plans.” In: Proceedings of the Linux
Symposium. Vol. 2. Citeseer. 2007, pp. 21–33.

[25] Richard Kissel, Matthew Scholl, Steven Skolochenko, and Xing Li.
“Guidelines for media sanitization.” In: NIST special publication 800
(2006), p. 88.

[26] Nikolai Joukov and Erez Zadok. “Adding secure deletion to your fa-
vorite file system.” In: Security in Storage Workshop, 2005. SISW’05.
Third IEEE International. IEEE. 2005, 8–pp.

114

http://dx.doi.org/10.1145/2110497.2110501
http://doi.acm.org/10.1145/2110497.2110501

Paper III References

[27] Brian Carrier, Eugene H Spafford, et al. “Getting physical with the
digital investigation process.” In: International Journal of digital
evidence 2.2 (2003), pp. 1–20.

[28] Steven Bauer and Nissanka Bodhi Priyantha. “Secure Data Deletion
for Linux File Systems.” In: Usenix Security Symposium. Vol. 174.
2001.

[29] Peter Gutmann. “Secure deletion of data from magnetic and solid-
state memory.” In: Proceedings of the Sixth USENIX Security Sym-
posium, San Jose, CA. Vol. 14. 1996.

115

Paper IV:
Adaptive Anomaly
Detection in Cloud using
Robust and Scalable
Principal Component
Analysis

117

118

Adaptive Anomaly Detection in Cloud us-
ing Robust and Scalable Principal Compo-
nent Analysis

B. Agrawal1, T. Wiktorski1, C. Rong1

1 Department of Electrical Engineering and Computer Science, University of

Stavanger

Abstract:
Cloud computing has become increasingly popular, which has led
many individuals and organizations towards cloud storage systems.
This move is motivated by benefits such as shared storage, com-
putation and, transparent service among a massive number of
users. However, cloud-computing systems require the maintenance
of complex and large-scale systems with practically unavoidable
runtime problems caused by hardware and software faults. Large
systems are very complex due to heterogeneity, dynamicity, scalabil-
ity, hidden complexity, and time limitations. This paper proposes
a scalable model for automatic anomaly detection on a large sys-
tem like a cloud. The anomaly detection process is capable of
issuing a correct early warning of unusual behavior in dynamic
environments after learning the system characteristic of normal
operation. In this paper, we propose an adaptive anomaly detec-
tion mechanism, which investigates principal components of the
performance metrics. It transforms the performance metrics into
a low-rank matrix and calculates the orthogonal distance using
the Robust PCA algorithm. The proposed model updates itself
recursively, while learning and adjusting the new threshold value,
to minimize reconstruction errors. This paper also investigates
robust principal component analysis in distributed environments
using Apache Spark as the underlying framework. It specifically
addresses cases in which normal operation might exhibit multiple
hidden modes. The accuracy and sensitivity of the model were
tested on Amazon CloudWatch datasets, and Yahoo! datasets.
The model achieved an accuracy of 88.54%.

119

1. Introduction Paper IV

1 Introduction

Cloud computing is becoming increasingly pervasive and trending to be
complicated. For the systems of this massive scale, reliability becomes a
major concern for the system administrator who manages servers. Automa-
tion is needed to monitor such a large system. This requires monitoring to
gain insights into the operation of the hardware, systems, and applications
running in the cloud. Monitoring the system is the key to track system
behavior and detect unusual behavior. Anomalies are identified as unusual
behavior based on performance issues, failures (hardware or software),
and configuration issues. An anomaly can cause unexpected behavior and
result in reduced efficiency or even downtime of the data center. Current
data centers use thousands of virtual machines that require dynamic re-
source scheduling to operate efficiently and cost-effectively. These data
centers need to meet the changing demand for various resources like CPU
and memory. A scheduler must allocate or re-allocate these resources
dynamically. Therefore, knowing the resource utilization helps detect un-
usual behavior. In other words, it is critical to monitor the server metrics
(e.g., latency, CPU, memory, disk I/O), represented by a time series, for
any unusual behavior. Early detection of unusual behavior of performance
metrics is critical to take preemptive action to protect users and provide a
better user-experience.

The performance data generated by these data centers is unstructured,
of high velocity, and a high volume that needs to be processed in an efficient
way. Moreover, the high volume needs to be handled with ease and in a
scalable manner. Scalability is a major requirement and a problem for
most anomaly detection tools. Popular Big Data frameworks like Hadoop
[16], MapReduce [31], HBase [21], Apache Spark 11, etc. address the
scalability issue. Apache Spark performs in-memory computation and has
an advanced DAG (Directed Acyclic Graph). Spark is 100 times faster
than MapReduce in memory and 10 times faster on disk [1].

In this paper, we propose a self-adaptive anomaly detection method to
detect unusual behavior. Our method analyzes the log files and calculates
reconstruction errors that adjust the threshold value, which helps to
detect anomalies accurately. Our method consists of 5 steps: (1) pre-
processing, (2) metric collection (3) feature extraction, (4) prediction, and
(5) anomaly detection. We introduce an efficient and distributed anomaly
detection algorithm that uses mild assumptions at uncorrupted points.

11https://spark.apache.org/

120

Paper IV 1. Introduction

The algorithm recovers the optimal low-dimensional subspace and identifies
the corrupted points. Our technique employs matrix decomposition using
SVD (Singular Value Decomposition). The PCA is transformed into
a low-rank approximation to data matrix using the lower dimensional
approximating subspace via SVD. The anomalous data are normally with
a higher magnitude and variance in the projection plane. The evaluation
of our model is done with data collected from Amazon CloudWatch, which
consists of five different geo-located datacenters and many thousands of
jobs and tasks. The accuracy of the model is calculated using precision
and recall metrics. Our model achieves an accuracy of 87.24% when tested
on Yahoo! time-series datasets [5], and an accuracy of 88.54% on Amazon
CloudWatch server metrics.

1.1 Our Contribution

We propose a real-time and self-adaptive anomaly detection technique
in a distributed environment using Spark as an underlying framework
to detect anomalies in the cloud infrastructure. An adaptive algorithm
is introduced, which uses reconstruction errors to determine the sample
size and update the threshold value. The accuracy of our methodology
is evaluated using AWS CloudWatch server metrics and Yahoo! anomaly
datasets.

1.2 Related Work

Most of the monitoring tools in a data center use a fixed threshold technique
to detect anomalies. Principal Component Analysis (PCA) has been used
in many research work on anomaly detection [39], [37]. Our work is mainly
based on the work done on KDD 99 datasets [39], for which the authors
proposed and successfully employed a PCA based classifier, to filter out
anomalies in a 34-dimensional connection record dataset. This method was
used in the KDD Cup 1999 [3] - a classifier learning context. Furthermore,
the authors took a first step forward towards robust approach for their
detector. The major drawback of the approach is the feature engineering,
which compiled features of KDD datasets that are hardly available in
real-life. There are other traditional techniques to detect anomalies, which
are used to monitor cloud infrastructures. These include threshold-based,
statistical, and entropy-based techniques. MASF [42] is a threshold-based
technique that operates on the hourly, daily or weekly data segments.
However, this technique compromised on accuracy and false alarm rates.

121

1. Introduction Paper IV

Entropy-based Anomaly testing (EbAT) [29] is a novel technique for
detecting anomalies in cloud computing systems and analyzes a metric’s
distribution. Many studies were done on anomaly detection, and they are
typically based on statistical techniques [38], [24], [27], [33]. Unfortunately,
most of these are not scalable and cannot operate at the scale needed
for future data center and cloud computing. Moreover, most of them are
fixed threshold techniques and require prior knowledge about applications
and service implementations. In addition, a few of them deal only with a
particular problem at specific levels of abstraction.

Pandeeswari et al [7] proposes a mixture of Fuzzy C-Means clustering al-
gorithm and Artificial Neural Network (FCM-ANN) for anomaly detection
in the cloud environment and also compare with Naive Bayes classifier and
Classic ANN. Auto-regression(AR) based statistical methods for online
monitoring time-series data to detect anomalies for applications running on
networked cloud systems [6]. However, the evaluation of this approach is
done on DARPA’s KDD cup dataset 1999 [3] that does not match current
cloud infrastructures. Yu et al [15] has proposed a scalable approach to
anomaly detection based on hierarchical grouping and a non-parametric
diagnostic mechanism using Hadoop and MapReduce. Similarly, Gupta
et al. [14] used Hadoop to convert logs into time-series and applied data
mining technique to extract anomalies. Their approaches achieve scalabil-
ity, but are not readily extensible for real-time processing. Additionally,
their approach deals with particular types of problems. Apache Spark,
being faster than MapReduce, has been used as an underlying framework
for our approach.

The proposed technique is distributed, scalable, and adaptive in nature.
Moreover, it improves over time as it learns about the workload charac-
teristics that enhances accuracy and reduces the number of false alarms.
It is scalable, i.e. it meets the requirement of future data centers, and it
can process the massive amount of logs. In our study, we investigate a
five-step method, including prediction, classification, and RPCA (Robust
Principal Component Analysis) for feature extraction to find anomalies.

1.3 Paper Structure

Section II gives an overview of the background. Section III introduces the
design and approach. Section IV evaluates our algorithm and presents the
results. Section V concludes the paper.

122

Paper IV 2. BACKGROUND

2 BACKGROUND

2.1 Robust PCA (Principal Component Analysis):

PCA is a linear transformation that maps a given set of data points into new
axis (i.e. principal components). It is used in the dimensional reduction
technique. In the classical PCA, the eigenvectors and eigenvalues [45] are
calculated from the sample covariance matrix using Euclidean distances
between sample data points [36]. In RPCA, robust covariance estimation
is used for eigen decompositions. The decomposition of a low-rank matrix
from a set of observations with gross sparse errors is known as robust
principal component analysis (RPCA) [18]. The robust PCs represent the
data effectively in a lower-dimensional space. The anomalies are detected in
this lower-dimensional space using distance measured; orthogonal distance,
which is the distance of an observation to the PCA space. It has many
applications in computer vision, image processing, and data ranking. In
addition, if the observed data has been contaminated by a dense noise in
addition to gross sparse errors, RPCA is used to get a low-rank matrix.

2.2 Spark:

Apache Spark 12 is an open-source distributed framework that has recently
become popular for data analytics. Similar to Hadoop, it is fault-tolerant
and supports distributed computation systems to process fast and large
streams of data. It uses Hadoop distributed file system to store and
read data. It provides in-memory cluster computing that allows user to
load data into a cluster’s memory, which in turn makes it perform up
to 100 times faster than Hadoop MapReduce. Apache Spark introduced
the concept of Resilient Distributed Datasets (RDD) [17], which is a
distributed memory abstraction that allows in-memory computation on
large distributed clusters with high fault-tolerance [11]. It enables efficient
data reuse that lets users explicitly persist intermediate results in memory.
RDDs are a good fit for many parallel applications. RDDs is used in
iterative in-memory operations where data is read multiple times and
manipulated using a rich set of operators. [1].

12Apache Spark; [http://spark.apache.org/]

123

3. APPROACH Paper IV

2.3 Hadoop:

Hadoop 13 [16] is an open-source framework for distributed storage and
data-intensive processing, first developed by Yahoo! 14. It consisted of
two core projects: Hadoop Distributed File System (HDFS) [25] and
MapReduce programming model [31]. HDFS is a distributed file system
that splits and stores data on nodes throughout a cluster, with a number
of replicas. It provides an extremely reliable, fault-tolerant, consistent,
efficient and cost-effective way to store a large amount of data. The
MapReduce model consists of two key functions: Mapper and Reducer.
The Mapper processes input data splits in parallel through different map
tasks and sends sorted, shuffled outputs to the Reducers that in turn
groups and processes them using a reduce task for each group [8] [10].

3 APPROACH

To improve efficiency of cloud platforms, it is necessary to provide a high
degree of transparency in the production systems that has a capability
of horizontal scaling. Data from Amazon CloudWatch 15 is collected and
stored in OpenTSDB 16 in a real-time. Figure 1 shows the steps involved
in the metrics collection from Amazon CloudWatch into OpenTSDB.
Different instances of Amazon EC2 services with various geo-locations are
created, and different user applications are simulated on these instances.
Amazon CloudWatch collects all the server metrics and sends them to
OpenTSDB in near real-time. The data are loaded into our RSPCA model,
which detects unusual patterns and alerts the user. The figure depicts
the entire data collection pipeline starting from Amazon CloudWatch to
the anomaly detection model. Different metrics received are staged in
realtime, and then written to a queue (Apache Kafka 17) for real-time using
spark streaming as well as to OpenTSDB/HBase for longer-term storage.
The anomaly detection model (RSPCA) consumes the dataâĂŤeither in
real-time (Apache Kafka) or in batch (HBase). The overall architecture of
the system follows lambda architecture 18.

13Hadoop; [http://hadoop.apache.org/]
14Yahoo! Developer Network, (2014), Hadoop at Yahoo!,

[http://developer.yahoo.com/hadoop/]
15https://github.com/prelert/engine-python
16http://opentsdb.net/
17https://kafka.apache.org/
18http://lambda-architecture.net/

124

Paper IV 3. APPROACH

CloudWatch

Spark

Streaming

User Apps

aws:us-west-2b

aws:us-west-1a

aws:us-west-2a

aws:us-east-1a

aws:eu-west-1a

aws:ap-northeast-1a

RSPCA

Visualization

Spark

OpenTSDB

Feature

Extraction

Update Model

Figure 1: AWS CloudWatch metrics are collected and stored in OpenTSDB from
Amazon CloudWatch, in real-time

We choose Spark streaming for real-time data and Spark for batch layer
(see Fig. 1). The system reads the data from HBase in the batch layer. The
batch jobs runs at a regular interval that computes and update the sample
for our model. Spark Streaming is used for processing data streams that
it receives directly from Amazon CloudWatch. The batch layer perform
feature extraction and send to the model that detect anomalies and at
the same time it update the sample from batch layer.The detailed steps of
our model are explained later in this section.

Figure 2 illustrates the CPU and memory utilization of the tasks in
Amazon CloudWatch. The data are sampled every second and collected
over a period of 10 hours. Each task consumes different amounts of memory
and CPU. However, there is a trend in the behavior of memory and CPU
utilization. Any trends and periodicity in the graphs are detected using
Fast Fourier Transformation [44]. An anomalous segment is identified when
an application cannot explain the observed CPU and memory utilization.
This may happen due to an unknown background process that consumes
CPU and memory resources either at a constant rate or randomly. It is
important to detect and filter out such events. Any unusual event also
provides insight into different problems with the possibility to correct

125

3. APPROACH Paper IV

Figure 2: CPU and memory-utilization time-series of AWS CloudWatch.

them.

SVD PCA

Update

sample

S >
Alert

Feature

Extraction

reconstruction
error

CloudWatch

Disk Read/

Write

CPU

Utilization

Network In/

Out

Memory

Utilization

Metric Collection

Figure 3: Steps involved in anomaly detection.

Our approach involves several important steps: pre-processing, metric
collection, feature extraction, error rate calculation, and anomaly detection.
Anomaly detection alone also is done in several steps - see Figure 3. The
first step is the aggregation of log files and their storage in OpenTSDB.
The log files are pre-processed into a form that can be read with our model.
Different types of metrics are collected using the log files, e.g., for this paper,

126

Paper IV 3. APPROACH

we collected resource utilization (CPU utilization, memory utilization, and
disk I/O). Pre-processing steps were performed for each type of metric.
First, trends (seasonal, cyclic, and trend) on each metric were extracted
using Fourier transformation and time series decomposition [32]. Each
metric is then converted to a data matrix and decomposed to a low-rank
representation using Singular Value Decomposition (SVD). Robust PCA
is used to separate outlier and low-rank representations from the original
data. An adaptive technique uses the mean reconstruction error as a
measure to determine the update threshold value. A predefined threshold
δ is used to determine when an update is required. If the value is greater
than the threshold value (δ), it is compared with detected anomalies, and
the threshold value for anomalies is updated. The steps involved in the
anomaly detection are:

Pre-processing data: The log data from each cloud instances are pre-
processed into a form that is suitable for the model. Each sample value
is transformed into a normalized form by dividing the sample value by
the mean of all samples. After normalization has been completed, the
normalized sample values are binned with each other. For example, CPU
and memory are binned together for the same time interval. This produces
a vector result, e.g. at time t : Et =< Ct,Mt >, where Ct is the CPU
utilization at time t and Mt is the Memory utilization at time t.

Metrics collection and selection: There are different metrics available
in the data, and it is hard to identify all metrics, it is necessary to select
an optimal subset of metrics. We collect a uniform set of metrics from
the nodes and concatenate them into one matrix, X. In this paper, we
collected several metrics from the data center, including CPU, memory,
disk I/O, and page cache. For example, there might be a memory leakage
that may affect the CPU utilization rate and other resources in the system.
To detect an anomaly, we collected the traces from AWS CloudWatch âĂŞ
see Table 4.1.

Feature extraction: The time series Xt might consist of three compo-
nents: a seasonal component, a trend-cycle component, and a remainder
component. The time series is often decomposed into 3 sub-time series:

• Seasonal : patterns that repeat with a constant period. For example,
weather data have seasonality, and every winter and summer there
is a similar pattern of temperature. The Fast Fourier Transform
is a good tool to detect seasonality if enough historical data are
provided.

127

3. APPROACH Paper IV

Table 4.1: List of collected metrics.

Index Metric

1 CPU rate

2 Canonical memory usage

3 Assigned memory usage

4 Unmapped page cache

5 Total page cache

6 Maximum memory usage

7 Disk I/O time

8 Local disk space usage

9 Maximum CPU rate

10 Maximum disk I/O time

• Trend : the underlying trend or pattern of the metrics. For example,
a stock-market trend, whichhas up or down patterns of stocks.

• Random : (noise or irregular) is the residual of a time series after
allocation into the seasonal and trends time series. This is an error
term to determine if a time-series contains an anomaly. It is a
remainder from the trend and the seasonality, which is an error
term.

For example, in an additive model, the time series can be written as

Xt = St + Tt + Et (4.1)

where Xt is the time series at period t, St is the periodically component
at period t, Tt is the trend-cycle component at period t and Et is the
remainder (irregular or error) component at period t.

Anomaly detection: We need to predict consumption to detect unusual
behavior in the resource utilization of large-scale distributed systems such
as cloud computing and data centers. Let Xt be the vector that represents
the measurement of CPU usage at time t. The data center consists of a
large number of nodes (n is large), and a vector is represented as vector Xn.

128

Paper IV 3. APPROACH

We use principal component analysis to identify the resource usage patterns,
and then conduct a prediction on a subset of these principal components.
PCA is a popular statistical technique for data analysis and dimensionality
reduction. However, it is fragile with respect to the corrupted input data
matrix, which often threatens its validity. A corrupted entry in X could
render the estimated low-rank representation L′ very different from the true
low-rank representation L. PCA uses the Singular Value Decomposition
(SVD) to find low-rank representations of the data. The robust version of
PCA, RPCA, identifies a low-rank representation, random noise, and a
set of outliers by repeatedly calculating the SVD and applying thresholds
to the singular values as well as an error for each iteration. A matrix
decomposition algorithm decomposes the input matrix X into the sum of
three parts X = L+ S +E using Robust Principal Component Pursuit
[28]. Where, L is a low-rank representation matrix illustrating a smooth
X, S is a sparse matrix containing corrupted data, and E is noise. If a
matrix X consists of trends, we represent the trend in each column. For
example, weekly seasonality would be where each row is a day of a week,
and one column is one full week.

The low-rank matrix L is calculated using the SVD of X and using
a threshold as the singular value [4]. This approach allows us to detect
multiple anomalies simultaneously, which makes the method more robust.
There are many techniques available for anomaly detection, but most of
them e.g. regression and moving averages (ARIMA), are not robust when
two or more different types of anomalies are present.

In the conventional approach, the first principal component corresponds
to the projected observation with the largest variance. The accuracy of
the conventional approach depends on the estimation of the covariance
matrix from the data, which is very sensitive for unusual observations. We
assume a large data matrix X decomposes into L and S from the classical
PCA definition given in Equation 4.2:

X = L+ S (4.2)

where,

• L has a low-rank representation matrix.

• S is a sparse matrix.

• X is a data matrix.

129

3. APPROACH Paper IV

We denote a mxn data matrix as XεRmxn, Xi,j denotes the (i, j)th
entry of X. Singular value decomposition (SVD) is the most commonly
used tools for low-rank decomposition. SVD decomposes matrix L into
three factors: U , V , and S shown in equation 4.3:

Lk =
l∑

i=1

(SiUiV
T
i) (4.3)

where,

• U is an m x m orthogonal matrix of the left singular vectors of X.

• V is an n x n orthogonal matrix of the right singular vector of X.

• S is the vector of singular values of X.

• l = min(m,n)

• K is 0 ≤ K ≤ rank(X)

Algorithm 2 Robust Outlier Detection Algorithm

1: Input X = {x1, x2, ..xn} . data matrix
2: Input e . Maximum number of outlier
3: Input δ . Pre-defined threshold
4: while not converged do
5: SVD:
6: L =

∑l
i=1(SiUiV

T
i)

7: S = argminS ‖E − S‖ , E = X − L . Calculate anomalies
8: if S > δ then
9: if S > y.predicted then

10: Update δ
11: end if
12: end if
13:

14: end while
15: return S,L . S = Anomalies, L = Low-rank approximation

In a general form, low-rank matrix representation can be written as in
equation 4.4

minL ‖X − L‖F (4.4)

130

Paper IV 4. EMPIRICAL EVALUATION

where, ‖.‖F is the Frobenius norm [43], L is the low-rank approximation
to X, and K is the maximal rank of L. L is solved with the help of the
following optimization problem in equation 4.5

min
L,S
‖L‖∗ + λ ‖S‖1

subj X = L+ S
(4.5)

where ‖‖∗ and ‖L‖1 are the nuclear norm and l1 norm, respectively, and
λ > 0 is a balanced parameter. The optimization problem in Equation 4.2
can be solved as a convex optimization problem [20]. However, this process
converges extremely slowly. It does not scale well for large matrices because
they maintain the high-order information. To overcome the scalability
problem, the first-order information is used [30]. By excluding the outliers
from the effort of low-rank approximation, we can ensure the reliability
of the estimated low-rank structure. The outlier presented in the sparse
matrix S contains significant variance that is calculated in the algorithm
2.

After the sample has been selected, the reconstruction error for the data
is calculated. The ratio of the mean reconstruction error of the training set
to the mean reconstruction error of the new sample is calculated. If σratio >
δ, then the current data is not well-represented by the current model. The
sample input is updated such that model can predict accurately.

4 EMPIRICAL EVALUATION

Setup: Our cluster is comprised of 6 nodes with Ubuntu 14.04: one node
for Namenode, Job Tracker, Zookeeper and second node for Secondary Na-
menode. The remaining 4 nodes act as Data Nodes, and Task Trackers. All
nodes have an AMD Opteron(TM) 4180 six-core 2.6GHz processor, 16 GB
of ECC DDR-2 RAM, 3x3 TeraBytes secondary storage and HP ProCurve
2650 switch. Experiments were conducted using Apache Spark, Hadoop-
0.20 releases, and OpenTSDB 2.2. Our default HDFS configuration had a
block size of 64 MB and the replication factor of 3.

The real scenario dataset comes from Google [22], Amazon, and Yahoo!
and it represents the various server metrics (e.g., memory usage, disk i/o,
CPU). The time series in the real dataset consists of malicious activities.
The detection techniques presented in this paper have been applied to
the real world scenarios, Amazon cloud, which generates CloudWatch
performance and events traces that are stored in HBase using OpenTSDB.

131

4. EMPIRICAL EVALUATION Paper IV

Moreover, the accuracy and sensitivity of the model are verified using
Yahoo! datasets [5] and AWS server metrics19. An example of AWS metric
includes CPU Utilization, and disk read bytes. Different kind of web
application was running on Amazon EC2 for which we collect monitoring
logs. When the CPU load is high, the CloudWatch stops responding.
Some of the incidents are unpredictable and unavoidable.

4.1 Anomaly Detection:

0

5

10

15

20

25

0 1000 2000 3000 4000

time

C
o
u
n
t

Figure 4: Anomaly detection on CPU utilization: The red dot indicates anomaly, the
black line indicates original data (X), the orange line is random noise (E) and the blue
line represents low rank signal (L).

In this section, we analyze the data we collected from the real-world
production data centers during 29 days. Metrics such as CPU, disk I/O,
and memory utilization were sampled every second. We chose CPU usage,
disk I/O, and memory utilization to analyze the system behavior of the
data center workloads. The CPU usage is defined by CPU utilization and
IO wait ratio. It is also determined by the percentage of the time that a
CPU, which waits for outstanding disk I/O, requests. Memory usage is

19Amazon; http://aws.amazon.com

132

Paper IV 4. EMPIRICAL EVALUATION

defined as the percentage of memory used during CPU usage. In Figure 4,
shows the number of anomalies detected by the model. The Robust PCA
technique compares resource utilization with a lower and higher threshold
bound. When the utilization exceeds the higher bound, unusual behavior
is detected, and an “unusual activity” alarm is generated. The red dots
are anomalies detected using the threshold value [27].

The complete historical data from OpenTSDB is loaded into our model
to obtain the exact threshold value. From the historical trace, we calculate
the lower and upper threshold bound, which represents unusual behavior
outside the acceptable range. In other words, there is only about a 1%
chance to have outliers from a normally-distributed time-series [34].

0

20

40

60

0 1000 2000 3000 4000

time

C
o
u
n
t

Figure 5: Memory usage anomaly detection: The red dot marks an anomaly, the black
line indicates original data (X), the orange line is random noise (E), and the blue line
represents a low rank signal (L).

Figure 5 illustrates memory-related anomaly detection. Like CPU
utilization, anomaly detection in memory usage uses a threshold. There
might be memory leakage in the system, which can lead to the detection
of unusual behavior. The upper bound is detected using the threshold
and the lower bound can be zero because the CPU can be in idle or sleep
mode. The acceptance range is between 0 to the threshold value.

133

4. EMPIRICAL EVALUATION Paper IV

(a) Amazon EC2 number of request every 5 min.

(b) AWS CloudWatch network traffic in.

Figure 6: Several metrics in AWS CloudWatch; red dot in the graph is abnormal
behaviour. The accuracy of the overall system is 87%.

134

Paper IV 4. EMPIRICAL EVALUATION

(a) AWS CloudWatch disk read in bytes.

(b) CPU and memory request together in CloudWatch.

Figure 7: Several metrics in AWS CloudWatch; red dot in the graph is abnormal
behaviour. The accuracy of the overall system is 87%.

135

4. EMPIRICAL EVALUATION Paper IV

Figure 6 and 7 shows the anomaly detection in the Amazon CloudWatch
data on different metrics. Figure 4.6(a) gives an overview of a number of
requests made from various user applications on Amazon region us-west-2b.
Similarly, Figure 4.6(b), 4.7(a) and 4.7(b) indicate abnormal behavior
detected on network traffic, disk read/write, and resource request (CPU
and memory) through CloudWatch logs.

4.2 Accuracy Test:

The models′ ability to precisely predict anomaly is evaluated by five metrics:
precision, recall, false positive rate, true positive rate, and F-measure.
These metrics are frequently used to evaluate the effectiveness of anomaly
detection and have been used in many relevant types of research [35]. Five
metrics are defined in table 4.2:

Table 4.2: Definition of the metrics.

Metric Definition

Precision p = TP/(TP + FP)

Recall r = TP/(TP + FN)

False positive rate fpr = FP/(FP + TN)

True positive rate tpr = TP/(TP + FN)

F-measure F = 2pr/(p+ r)

Higher precision ensures fewer false positive errors, while a model with
high recall ensures fewer false negative errors. An ideal failure prediction
model would achieve higher precision and recall value, i.e. precision =
recall = 1. However, both high recall and precision are difficult to achieve
at the same time. They are often inversely proportional to each other.
Improving recall in most cases lowers precision and vice-versa. F-measure
indicates whether the model is accurate or not. It ensures that both
precision and recall are reasonably high.

136

Paper IV 4. EMPIRICAL EVALUATION

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0
0.

4
0.

8
1.

2
1.

6
2●

●

●

●

●

●

●

●

●

●

●

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

AUC = 0.87

Figure 8: Performance of the proposed anomaly detector.

Table 4.3: Evaluation Metrics

Description Value

No. of anomaly detected 13

Total No. of anomaly 15

Recall 0.80

Precision 0.85

Accuracy 87.24%

FPR 0.1

F-measure 0.86

The anomaly detection is verified on labeled time-series Yahoo! datasets
[5]. From the observation mentioned in Table 4.3, we used time-series for
1460 periods. In total, we have 1460 observations of which 13 anomalies

137

4. EMPIRICAL EVALUATION Paper IV

events have been detected using the model defined above. The actual
number of anomaly present in the datasets is 15. The accuracy of the model
is 87.24%. True positives are anomalies, which are identified correctly, and
true negatives are anomalies that are not identified. Figure 8 shows the
performance of our anomaly detection approach. The algorithm achieves
a TPR of 73.3% and an FPR of 28.2%. The Area Under Curve (AUC) is
87.24%

4.3 Scalability test:

The technique proposed needs to be able to scale-out and efficient to cope
with massive amounts of data generated by large system. To perform the
evaluation, we vary the number of nodes (executors) and the volume of
the incoming data along with historical data. In this experiment, we use
two million time series of fixed-length (15GB), which were generated by
Amazon CloudWatch using simulator to produce real-world scenario.

Distributed and parallel processing is a key feature of data-intensive
applications. In order to evaluate the scalability of our approach, different
number of nodes is used. Since we are using Spark on top of YARN, each
executor needs to isolated memory partition.

The data streams coming from Amazon CloudWatch is consumed by
all the receivers in parallel. The receivers do not perform any task on the
data. Since the data stream is coming every 10 minutes, we perform the
experiment on micro-batches of data and historical data from OpenTSDB.

In order to evaluate the scalability of the model over large volumes of
data, we compare different workloads. The number of executors was fixed
to 7 and each executor was configured to 4GB of memory. Figure 4.9(a)
shows the execution time with an increasing number of executors. Further,
the processing time and the variance decrease when more executors are
added. A low variance helps to guarantee an upper bound for the execution
time. In fact, spark is fault tolerance which may require recomputing
of some partitions and hence imposing extra overhead. The optimum
execution time is reached at 6 executors. Increasing the parallelism beyond
7 executors does not increase the speed further.

Figure 4.9(b) evaluate the scalability of the algorithms over the incoming
data streams with different workloads. We use the optimal number of
parallel executors (5 and 10) for training our model with configuration of
4GB executor’s memory. The incoming data varies from 5 to 30 million
(the size of 10GB to 60GB). The execution time of varying workloads are
displayed in Figure 4.9(b). The different configuration of executors observe

138

Paper IV 4. EMPIRICAL EVALUATION

1 2 3 4 5 6 7

10

20

30

40

50

60

number of executors

e
xe

c
u

ti
o

n
 t

im
e

 (
s
e

c
)

(a) Scalability and performance on data stream.

0
5
0

1
0
0

1
5
0

number of time series (million)

e
xe

c
u
ti
o
n
 t
im

e
 (

s
e
c
)

5 10 15 20 25 30

size of executor

5 executor
10 executor

(b) Size-up experiment: execution time vs. number of
collected data.

Figure 9: Scalability test with execution time per number of executors.

both configuration can scale and exhibits supra-linearly with the quantity
of the time series. The total execution time of handling time-series takes
less than 90 seconds to finish five million data points with optimized
settings. The training process uses the full set of data from batch layer
and generate new models each time while Spark Streaming runs periodical
to process the data.

139

4. EMPIRICAL EVALUATION Paper IV

4.4 Benchmark test:

Two most popular anomaly detection algorithm were compared with our
model. Figure 4.10(a) shows the anomaly detection technique 20 used by
Twitter. Twitter uses Seasonal Hybrid ESD (S-H-ESD) as an underlying
algorithm. It is built on the Generalized ESD test for detecting anomalies.
The algorithm can detect both local as well as global anomalies. This is
achieved by using a concept of time series decomposition and using robust
statistical metrics together with ESD. For longer time series (say more
than 6 months), the algorithm uses a piecewise approximation. It has
an accuracy of 87% but has a high false-positive rate. Similarly, Netflix
uses a Robust Anomaly Detection as a part of open source project called
Surus 21. Netflix uses PCA for detecting anomalies that has an accuracy
of 76.42%.

The accuracy of our model is evaluated against other state-of-the-art
anomaly detection techniques like SVM [41], DBSCAN [23] [2], and Incre-
mental PCA [40]. Our approach first converts the principal components
(PC)s into a low-rank matrix (L), and then separates it from a sparse
matrix to distinguish noise. We compute the Mean Absolute Difference
between time series to compare it with the baseline model. A low average
similarity score time series is labeled as an anomaly [9]. For example, in
Yahoo datasets, which consist of 1400 time series, 15 were unusual features.
All the methods are evaluated in terms of false positive/negative and
accuracy = TP

(TP+FP) = No.ofcorrect
Total in real-world datasets. To evaluate the

accuracy of our model, real-world data sets such as Yahoo! data, KDD
intrusion detection dataset , ECG data and Amazon CloudWatch metrics
were used. Figure 11 details the performance of other techniques such
as SVM (Support Vector Machine) [13] [26], DBSCAN (Density-based
spatial clustering of applications with noise) [19] and Incremental PCA [12]
with compared to RSPCA. The figure shows that RSPCA is superior and
more accurate. The RSPCA model performs better when the time-series
data are random in nature. Our technique outperformed the baseline
techniques because the low-rank space of the principal component and
noise is well separated by its variance. We used popular conventional
anomaly-detection algorithms as a baseline.

20https://github.com/twitter/AnomalyDetection
21https://github.com/Netflix/Surus
21http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
21https://github.com/h2oai/h2o-2/tree/master/smalldata

140

Paper IV 4. EMPIRICAL EVALUATION

21.4

76.2

131.1

186

240.9

295.7

sep. 27 sep. 29 okt. 1 okt. 3 okt. 5

co
un

t

0.91% Anomalies (alpha=0.05, direction=both)

(a) Twitter anomaly detection algorithm.

0

2

4

0 500 1000 1500

time

U
ti
li
z
a
ti
o
n

(b) Robust PCA algorithm.

y

0

5

10

15

0 500 1000 1500

time

X
_
o
ri

g
in

a
l

abs(S_transform)

1

2

3

4

5

(c) Netflix Robust Anomaly Detection algorithm using PCA.

Figure 10: Several anomaly detection algorithms tested on Yahoo datasets

141

5. Conclusion Paper IV

0

25

50

75

KDD Yahoo ECG CloudWatch

data

a
c
c
u
ra

c
y

algorithm

DBSCAN

IPCA

RSPCA

SVM

Figure 11: Average accuracy of our method compared to other approaches on different
datasets.

5 Conclusion

Large-scale and complex cloud computing systems are susceptible to
failures, which can significantly affect the cloud dependability and perfor-
mance. In this paper, we present a real-time adaptive anomaly detection
technique in cloud infrastructure. We collected all the performance metrics
from Amazon CloudWatch logs and normalized it. Fast Fourier Transfor-
mation was used to detect a trend in the input time series and converted
the time series into a matrix. Robust PCA was used to transform the
original matrix into a low-rank representation using recursive SVD and a
soft threshold. In this paper, a self-adaptive threshold approach is used.
The threshold is updated during a learning phase. RPCA uses an efficient
approach to decompose into low-rank representations using Spark as the
underlying framework.

References

[1] Apache Spark - Lightning-fast cluster computing. url: https://
spark.apache.org/.

[2] DBSCAN clustering algorithm on top of Apache Spark. url: https:
//github.com/alitouka/spark_dbscan.

142

https://spark.apache.org/
https://spark.apache.org/
https://github.com/alitouka/spark_dbscan
https://github.com/alitouka/spark_dbscan

Paper IV References

[3] Knowlege Discovery and Data Mining Cup 1999 Data. url: http://
www.ics.uci.edu/%20kdd/databases/kddcup99/kddcup99.html.

[4] MetaMarkets. Algorithmic Trendspotting and the Meaning of In-
teresting. url: https://metamarkets.com/2012/algorithmic-
trendspotting-the-meaning-of-interesting/.

[5] Yahoo! labs. url: http://webscope.sandbox.yahoo.com/.

[6] Prathamesh Gaikwad, Anirban Mandal, Paul Ruth, Gideon Juve,
Dariusz Król, and Ewa Deelman. “Anomaly detection for scientific
workflow applications on networked clouds.” In: High Performance
Computing & Simulation (HPCS), 2016 International Conference
on. IEEE. 2016, pp. 645–652.

[7] N. Pandeeswari and Ganesh Kumar. “Anomaly Detection System in
Cloud Environment Using Fuzzy Clustering Based ANN.” In: Mob.
Netw. Appl. 21.3 (June 2016), pp. 494–505. issn: 1383-469X. doi:
10.1007/s11036-015-0644-x. url: http://dx.doi.org/10.
1007/s11036-015-0644-x.

[8] Bikash Agrawal, Tomasz Wiktorski, and Chunming Rong. “Analyz-
ing and Predicting Failure in Hadoop Clusters Using Distributed
Hidden Markov Model.” In: Cloud Computing and Big Data: Second
International Conference, CloudCom-Asia 2015, Huangshan, China,
June 17-19, 2015, Revised Selected Papers. Cham: Springer Interna-
tional Publishing, 2015. isbn: 978-3-319-28430-9. doi: 10.1007/978-
3-319-28430-9_18. url: http://dx.doi.org/10.1007/978-3-
319-28430-9_18.

[9] Rob J Hyndman, Earo Wang, and Nikolay Laptev. “Large-scale un-
usual time series detection.” In: 2015 IEEE International Conference
on Data Mining Workshop (ICDMW). IEEE. 2015, pp. 1616–1619.

[10] Bikash Agrawal, Antorweep Chakravorty, Chunming Rong, and
Tomasz Wiktor Wlodarczyk. “R2Time: A Framework to Analyse
Open TSDB Time-Series Data in HBase.” In: Cloud Computing
Technology and Science (CloudCom), 2014 IEEE 6th International
Conference on. IEEE. 2014, pp. 970–975.

[11] Mohiuddin Solaimani, Mohammed Iftekhar, Latifur Khan, Bhavani
Thuraisingham, and Joey Burton Ingram. “Spark-based anomaly
detection over multi-source VMware performance data in real-time.”
In: Computational Intelligence in Cyber Security (CICS), 2014 IEEE
Symposium on. IEEE. 2014, pp. 1–8.

143

http://www.ics.uci.edu/%20kdd/databases/kddcup99/kddcup99.html
http://www.ics.uci.edu/%20kdd/databases/kddcup99/kddcup99.html
https://metamarkets.com/2012/algorithmic-trendspotting-the-meaning-of-interesting/
https://metamarkets.com/2012/algorithmic-trendspotting-the-meaning-of-interesting/
http://webscope.sandbox.yahoo.com/
http://dx.doi.org/10.1007/s11036-015-0644-x
http://dx.doi.org/10.1007/s11036-015-0644-x
http://dx.doi.org/10.1007/s11036-015-0644-x
http://dx.doi.org/10.1007/978-3-319-28430-9_18
http://dx.doi.org/10.1007/978-3-319-28430-9_18
http://dx.doi.org/10.1007/978-3-319-28430-9_18
http://dx.doi.org/10.1007/978-3-319-28430-9_18

References Paper IV

[12] Meysam Alikhani and Mohammad Ahmadi Livani.“Dynamic anomaly
detection by using incremental approximate PCA in AODV-based
MANETs.” In: Journal of AI and Data Mining 1.2 (2013), pp. 89–
101.

[13] Yuting Chen, Jing Qian, and Venkatesh Saligrama. “A new one-class
SVM for anomaly detection.” In: Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2013 IEEE International Conference on. IEEE.
2013, pp. 3567–3571.

[14] Manish Gupta, Abhishek B Sharma, Haifeng Chen, and Guofei Jiang.
“Context-aware time series anomaly detection for complex systems.”
In: WORKSHOP NOTES. 2013, p. 14.

[15] Li Yu and Zhiling Lan. “A scalable, non-parametric anomaly detec-
tion framework for hadoop.” In: Proceedings of the 2013 ACM Cloud
and Autonomic Computing Conference. ACM. 2013, p. 22.

[16] Tom White. Hadoop: The definitive guide. ” O’Reilly Media, Inc.”,
2012.

[17] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael J Franklin, Scott Shenker,
and Ion Stoica. “Resilient distributed datasets: A fault-tolerant ab-
straction for in-memory cluster computing.” In: Proceedings of the
9th USENIX conference on Networked Systems Design and Imple-
mentation. USENIX Association. 2012, pp. 2–2.

[18] Emmanuel J Candès, Xiaodong Li, Yi Ma, and John Wright. “Robust
principal component analysis?” In: Journal of the ACM (JACM)
58.3 (2011), p. 11.

[19] Mete ÇElik, Filiz Dadaşer-çelik, and Ahmet Şakir Dokuz. “Anomaly
detection in temperature data using dbscan algorithm.” In: Inno-
vations in Intelligent Systems and Applications (INISTA), 2011
International Symposium on. IEEE. 2011, pp. 91–95.

[20] Venkat Chandrasekaran, Sujay Sanghavi, Pablo A Parrilo, and Alan
S Willsky. “Rank-sparsity incoherence for matrix decomposition.”
In: SIAM Journal on Optimization 21.2 (2011), pp. 572–596.

[21] Lars George. HBase: the definitive guide. ” O’Reilly Media, Inc.”,
2011.

144

Paper IV References

[22] Charles Reiss, John Wilkes, and Joseph L. Hellerstein. Google cluster-
usage traces: format + schema. Technical Report. Revised 2012.03.20.
Posted at URL http://code.google.com/p/googleclusterdata/

wiki/TraceVersion2. Mountain View, CA, USA: Google Inc., Nov.
2011.

[23] Tran Manh Thang and Juntae Kim. “The anomaly detection by
using dbscan clustering with multiple parameters.” In: Information
Science and Applications (ICISA), 2011 International Conference
on. IEEE. 2011, pp. 1–5.

[24] Chengwei Wang, Krishnamurthy Viswanathan, Lakshminarayan
Choudur, Vanish Talwar, Wade Satterfield, and Karsten Schwan.
“Statistical techniques for online anomaly detection in data cen-
ters.” In: Integrated Network Management (IM), 2011 IFIP/IEEE
International Symposium on. IEEE. 2011, pp. 385–392.

[25] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. “The hadoop distributed file system.” In: Mass Storage
Systems and Technologies (MSST), 2010 IEEE 26th Symposium on.
IEEE. 2010, pp. 1–10.

[26] Vasilis A Sotiris, Peter W Tse, and Michael G Pecht. “Anomaly
detection through a bayesian support vector machine.” In: Reliability,
IEEE Transactions on 59.2 (2010), pp. 277–286.

[27] Chengwei Wang, Vanish Talwar, Karsten Schwan, and Parthasarathy
Ranganathan. “Online detection of utility cloud anomalies using
metric distributions.” In: Network Operations and Management Sym-
posium (NOMS), 2010 IEEE. IEEE. 2010, pp. 96–103.

[28] Zihan Zhou, Xiaodong Li, John Wright, Emmanuel Candes, and Yi
Ma. “Stable principal component pursuit.” In: Information Theory
Proceedings (ISIT), 2010 IEEE International Symposium on. IEEE.
2010, pp. 1518–1522.

[29] Chengwei Wang.“EbAT: Online Methods for Detecting Utility Cloud
Anomalies.” In: Proceedings of the 6th Middleware Doctoral Sympo-
sium. MDS ’09. Urbana Champaign, Illinois: ACM, 2009, 4:1–4:6.
isbn: 978-1-60558-852-0. doi: 10.1145/1659753.1659757. url:
http://doi.acm.org/10.1145/1659753.1659757.

145

http://code.google.com/p/googleclusterdata/wiki/TraceVersion2
http://code.google.com/p/googleclusterdata/wiki/TraceVersion2
http://dx.doi.org/10.1145/1659753.1659757
http://doi.acm.org/10.1145/1659753.1659757

References Paper IV

[30] John Wright, Arvind Ganesh, Shankar Rao, Yigang Peng, and Yi Ma.
“Robust principal component analysis: Exact recovery of corrupted
low-rank matrices via convex optimization.” In: Advances in neural
information processing systems. 2009, pp. 2080–2088.

[31] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data
processing on large clusters.” In: Communications of the ACM 51.1
(2008), pp. 107–113.

[32] Philippe Masset. “Analysis of financial time-series using Fourier and
wavelet methods.” In: Available at SSRN 1289420 (2008).

[33] Hai Qiu, Neil Eklund, Xiao Hu, Weizhong Yan, and Naresh Iyer.
“Anomaly detection using data clustering and neural networks.”
In: Neural Networks, 2008. IJCNN 2008.(IEEE World Congress on
Computational Intelligence). IEEE International Joint Conference
on. IEEE. 2008, pp. 3627–3633.

[34] Anthony McCluskey and Abdul Ghaaliq Lalkhen. “Statistics II:
Central tendency and spread of data.” In: Continuing Education in
Anaesthesia, Critical Care & Pain 7.4 (2007), pp. 127–130.

[35] Felix Salfner and Miroslaw Malek. “Using hidden semi-markov mod-
els for effective online failure prediction.” In: Reliable Distributed
Systems, 2007. SRDS 2007. 26th IEEE International Symposium on.
IEEE. 2007, pp. 161–174.

[36] Roland Kwitt and Ulrich Hofmann. “Robust Methods for Unsu-
pervised PCA-based Anomaly Detection.” In: Proc. of IEEE/IST
WorNshop on Monitoring, AttacN Detection and Mitigation (2006),
pp. 1–3.

[37] Khadija Houerbi Ramah, Hichem Ayari, and Farouk Kamoun. “Traf-
fic anomaly detection and characterization in the tunisian national
university network.” In: NETWORKING 2006. Networking Tech-
nologies, Services, and Protocols; Performance of Computer and
Communication Networks; Mobile and Wireless Communications
Systems. Springer, 2006, pp. 136–147.

[38] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier.
“Using Magpie for Request Extraction and Workload Modelling.” In:
OSDI. Vol. 4. 2004, pp. 18–18.

[39] Mei-Ling Shyu, Shu-Ching Chen, Kanoksri Sarinnapakorn, and LiWu
Chang. A novel anomaly detection scheme based on principal com-
ponent classifier. Tech. rep. DTIC Document, 2003.

146

Paper IV References

[40] Peter Hall, David Marshall, and Ralph Martin. “Adding and sub-
tracting eigenspaces with eigenvalue decomposition and singular
value decomposition.” In: Image and Vision Computing 20.13 (2002),
pp. 1009–1016.

[41] Binh Viet Nguyen. “An application of support vector machines
to anomaly detection.” In: Research in Computer Science-Support
Vector Machine, report (2002).

[42] Jeffrey P Buzen and Annie W Shum. “Masf-multivariate adaptive
statistical filtering.” In: Int. CMG Conference. 1995, pp. 1–10.

[43] Changxue Ma, Yves Kamp, and Lei F Willems. “A Frobenius norm
approach to glottal closure detection from the speech signal.” In:
Speech and Audio Processing, IEEE Transactions on 2.2 (1994),
pp. 258–265.

[44] E Oran Brigham and Elbert Oran Brigham. The fast Fourier trans-
form. Vol. 7. Prentice-Hall Englewood Cliffs, NJ, 1974.

[45] Carl S Rudisill. “Derivatives of eigenvalues and eigenvectors for a
general matrix.” In: AIAA Journal 12.5 (1974), pp. 721–722.

147

Paper V:
AFFM: Auto Feature
Engineering in Field-Aware
Factorization Machines for
Predictive Analytics

149

150

AFFM: Auto Feature Engineering in Field-
Aware Factorization Machines for Predic-
tive Analytics

L. Selsaas1, B. Agrawal2, C. Rong2, T. Wiktorski2

1 Gamut
2 Department of Electrical Engineering and Computer Science, University of

Stavanger

Abstract:
User identification and prediction is a typical problem with the
cross-device connection. User identification is useful for the rec-
ommendation engine, online advertising, and user experiences.
Extreme sparse and large-scale data make user identification a
challenging problem. To achieve better performance and accuracy
for identification a better model with short turnaround time, and
able to handle extremely sparse and large-scale data is the needed.
In this paper, we proposed a novel efficient machine learning ap-
proach to deal with such problem. We have adapted Field-aware
Factorization Machine’s approach using auto feature engineering
techniques. Our model has the capacity to handle multiple features
within the same field. The model provides an efficient way to
handle the fields in the matrix. It counts the unique fields in the
matrix and divides both the matrix with that value, which provides
an efficient and scalable technique in term of time complexity. The
accuracy of the model is 0.864845, when tested with Drawbridge
datasets released in the context of the ICDM 2015 Cross-Device
Connections Challenge.

151

1. Introduction Paper V

keywords– Predictive analytics, FFM, Factorization machines,
cross-device connections

1 Introduction

Predictive analytics is an important technique with applications in many
fields ranging from business to science. Applications such as online ad-
verting, e-commerce website, personalized search, social networks, etc.,
make use of predictive analytics and data mining to mine large-scale data
to identify users. How to provide effective personalized recommendations
while moving users across cross-devices, became one of the most important
research topics in the past few decades. The accurate predictive modeling
for identifying users on cross-devices are required. This identification will
help in recommendation engine, online advertising and will improve user
experiences.

The task of ICDM 2015: Drawbridge cross-device connections com-
petition is to identify the users using different devices. Factorization
Machines (FM) is used as the base model to predict the users. FM is
a generic approach that allows to mimic most factorization models by
feature engineering. The factorization machines combine the generality
of the feature engineering with the superiority of factorization models in
estimating interactions between categorical variables of a large domain.

Figure 1: User connected to multiple cross-devices.

152

Paper V 1. Introduction

Problem Statement: Now a day’s consumers are using many devices
to complete the online task or browse the internet. Consider the case,
where a user wants to plan the holiday trip: he reads a travel blog on
his smartphone on the way to work, search for hotels on his laptop after
work, search for flight tickets on his tablet during dinner, search for trip
advisor rated best restaurant in the area on his PC, and also download
a travel book on his Kindle. As the users move across the devices to
complete their online tasks, their identity becomes fragmented. The ads,
recommendations, and messages are not always able to separate whether
the activity on the different devices is tied to one user or many users.
The model is required that can predict the users as they switch between
devices (websites/mobile apps) as shown in figure 1.

1.1 Our Contribution

We propose an automated and scalable model for identifying the users
across the cross-device connection. Our approach provides a novel way
of feature engineering in FFM model. The learning approach used in
our model provides an efficient learning rate compared to classical FFM.
During the learning phase, the learning rate is divided by the number
of features in the opposite field to balance out how much each weight is
updated.

1.2 Paper Structure

Section II gives an overview of the background. Section III introduces the
design and approach of our model. Section IV evaluates our algorithm
and presents the results. Section V concludes the paper.

1.3 Related Work

In 2010, Rendle [8] introduced Factorization Machines (FM), which com-
bine the advantages of Support Vector Machines (SVM) [9] with fac-
torization models. However, with raw data the performance of FM is
culpable. Feature engineering is required beforehand to use FM. Field-
aware factorization machines (FFM) [2] have been used to win two Kaggle
clickâĂŞthrough rate prediction competitions hosted by Criteo22 and
Avazu23. The performance of the model degrades with large matrices.

22https://www.kaggle.com/c/criteo-display-ad-challenge
23https://www.kaggle.com/c/avazu-ctr-prediction

153

2. Background Paper V

Moreover, FFM requires pre-feature engineering on the raw data before
predicting. Factorization Machines are available in many open source
libraries such as GraphLab [4], Spark-libFM24, and Bidmach [6]. The
reason we adopted FFM because it provides an efficient way to solve the
larger problems with better accuracy.

The challenges of track 2 of the KDD cup 2012 competition was to
predict the click-through rate (CTR) of advertisements [7]. They also
used featured engineering with several models ANN, probability models
and collaborative filters. They used an interesting method of featured
engineering to design their factor model. Another research on predicting
clicks on ads on Facebook provides an interesting approach for featured
engineering [5]. In the paper, it shows how the number of parameters has
an impact on the overall system performance. However, it uses decision
tree for prediction over featured engineering.

The approach mentioned in this paper provides an efficient way for the
users to perform machine learning without caring much about feature
engineering.

2 Background

2.1 FM (Factorization Machines):

Factorization machines are a new model class that combines the advantages
of Support Vector Machines (SVM). Steffen Rendle [8] introduced this
model in 2010. This model exhibits similar properties of SVM, but FM
is used as general prediction tasks. Like other models, non-linear SVMs
or decision trees, FM includes interactions between predictor variables.
For example, FMs can learn that young users like to access from different
devices, whereas preferences of old users are opposite.

2.2 Feature Engineering:

Feature engineering is the process of creating features that make machine
learning more accurate and efficient using domain knowledge of the data.

24http://spark-packages.org/package/zhengruifeng/spark-libFM

154

Paper V 3. Approach

3 Approach

As introduced in Section 1, FFM is used as our based model for predicting
users across cross-devices. Factorization Machines (FM) are defined as
mentioned in equation 4.1. A second-order FM for i-th feature vector xi
of n x n matrix X is defined as in equation 4.1:

ŷ(x) := w0 +
n∑
i=1

wixi +
n∑
i=1

n∑
j=i+1

< vi, vj > xixj (4.1)

where, < vi, vj > is the dot product of two vectors of size k:

< vi, vj >:=
k∑

f=1

< vi,f , vj,f > (4.2)

The field-aware factorization machines (FFM) is explained in equation
4.3:

ŷ(x) := w0 +

n∑
i=1

wixi +

n∑
i=1

n∑
j=i+1

< vi,f1, vj,f2 > xixj (4.3)

where, < vi,f1, vj,f2 > are two vectors with length k. f1 and f2 are
respectively the fields of i and j.

The two vectors are compared, and their features are loaded into the
model without any feature engineering. The datasets from the device,
cookie and IPs are used for feature engineering. The datasets device and
cookie are merged using common field drawbridgeHandle. As our model
handles features, we can just load raw features in the model. The learning
model reads the features of the matrices and updates the learning rate.
There are 42 different types of features used out of which seven features
are shown as an example in the figure 2. Equation 4.4 defines the mapping
of two vectors field and feature that is derived from FFM definition:

ŷ(x) :=

n∑
i=1

n∑
j=i+1

< vi,f1, vj,f2 > xixj (4.4)

The datasets are fed to the model. Before sending the data, the cookies
and devices are merged. On the training phase, it calculates the factors
in the feature vector and field vector. In the update, the learning rate is
calculated, and learning of the model with each field present in the cell
is calculated. The update algorithm performance is quite efficient. The

155

3. Approach Paper V

Figure 2: Interactions between fields and their features.

Cookies,Devices,IPs,train datasets.

Update

Trainer Predict

PredictFactor

fac
to

r(f
eV

,FV
)

facto
r(feV,FV

) Y(t)

le
ar

n
in

gr
at

e

Figure 3: Predictive learning Data Model.

learning rate is divided by the number of features in the opposite field. In
fact, in this process, it can save time to traverse the entire matrix. And
finally, users are predicted in the prediction block as shown in figure 3

Figure 4 depicts the interaction pairs of the model between field vector
and feature vector. Within every cell of the matrix in Figure 4, the model
had its own set of features for the factorization. For example, there are 8
unique device types, which are used as a feature for the field name device
type. For unique 8 types of device, the mapping between fields and features
is shown in figure 5. There are 89 unique device operating systems, 368566
unique properties, 443 unique categories, etc. The training file consists of
142770 devices and the test file consists of 61156. There are almost 2.1
million cookies records. The traditional FFM provides an efficient method

156

Paper V 3. Approach

1 2 3 4 5 6 7 8

DevideID * CookieID

DevideID * OStype

DevideID * Devicetype

DevideID * IP

DevideID * IscellIP

DevideID * Device/Cookie

DevideID * PropertyID

Device/Cookie * PropertyID

IscellIP* PropertyID

CompOS/Type* PropertyID

DeviceType* PropertyID

IP* PropertyID

CookieID* PropertyID

Figure 4: Factors in the feature vector and field vector

1 2 3 4 5 6 7 8

devtype_1 * CookieID

devtype_1 * OStype

devtype_1 * Devicetype

devtype_1 * IP

devtype_1 * IscellIP

devtype_1 * Device/Cookie

devtype_1 * PropertyID

devtype_7 * PropertyID

devtype_6* PropertyID

devtype_1

devtype_3* PropertyID

devtype_4* PropertyID

devtype_5* PropertyID

devtype_2

devtype_3

devtype_4

devtype_5

devtype_6

devtype_7

devtype_8

devtype_2* PropertyID

Figure 5: Factors multiplication between fields and features of devicetype field.

of factor field multiplication. Our model reads the entire field and divides
the feature using the number of features in the opposite field, which makes

157

3. Approach Paper V

it efficient by jumping the cells in the matrix.
The model deals with the properties directly without the need for any

feature engineering. The model can adapt the properties directly from
the raw data. Before feeding data to the model, the number of potential
cookie/device pairs is reduced down to about 900k and then treats as a
regression problem. There exist several properties for devices and cookies.
This makes learning challenging for FFM in terms of time and memory
complexity.

3.1 FFM Learning rate:

The issue with learning rate is that the other features interacting with the
property feature will get updated once for every property and since they
are all updates towards the same field this means we update the same
weight again for every property. With the large-scale datasets where the
properties of fields are massive, this tends to be an issue. For example,
we could have over 200 properties for one sample and maybe just 1 for
another. This can be compared to one of the samples getting 200 times
higher learning rate towards that field. So it would either end up with a
too high or too low learning rate âĂŞ neither works very well.

Our approach solves this problem by dividing the learning rate by the
number of features in the opposite field. For example, if there are 200
properties in one sample and 1 for another. The learning rate is divided
by 200, so the total amount of learning rate applied is the same as if there
was 1 property only. This approach fits the training data to the point of
extreme precision, but it could easily over-fit. Another key challenge is
to overwhelm the over-fit if there are the small weights adding up. We
need to add Regularization [3] to reduce the impact of the smaller weights
making a more robust solution, which does not over-fit.

3.2 Feature Engineering:

The model can automatically handle features from the original data, which
makes the model scalable and efficient. This provides advantages over
Support Vector Machines (SVMs) and Gradient Boost Machines (GBMs).
We can achieve similar accuracy, using other machine learning algorithms
like SVMs, GBMs, Decision trees, etc. But feature engineering is necessary
to be performed before processing data to the model, which consumes
unnecessary latency and performance degradation of the model. In fact,
users need to understand the properties of the matrix to perform feature

158

Paper V 3. Approach

engineering. 42 different features are extracted that is listed in table 4.1.

Table 4.1: List of features used in the model.

S.N. Fieldname Type
1 Device type

Device

2 Device OS version
3 Device Country Info
4 DeviceAnonymous c0
5 DeviceAnonymous c1
6 DeviceAnonymous c2
7 DeviceAnonymous 5
8 DeviceAnonymous 6
9 DeviceAnonymous 7
10 deviceProperties
11 computer OS type

Cookie

12 Browser version
13 Cookie country info
14 CookieAnonymous c0
15 CookieAnonymous c1
16 CookieAnonymous c2
17 CookieAnonymous 5
18 CookieAnonymous 6
19 CookieAnonymous 7
20 cookieProperties
21 DeviceIPFreq count

Device IP

22 DeviceIPAnonymous Count 1
23 DeviceIPAnonymous Count 2
24 DeviceIPanonymous Count 3
25 DeviceIPAnonymous Count 4
26 DeviceIPAnonymous Count 5
27 CountIPsForDevice
28 CookieIPFreq count

Cookie IP

29 CookiesLeastFrequentIP
30 CookiesSecondLeastFrequentIP
31 CookiesThirdLeastFrequentIP
32 CookieIPAnonymous Count 1
33 CookieIPAnonymous Count 2
34 CookieIPanonymous Count 3
35 CookieIPAnonymous Count 4
36 CookieIPAnonymous Count 5
37 CountIPsForCookie
38 IPaggIs cell IP

IP aggregation
39 IPaggTotal Freq
40 IPaggAnonymous count c0
41 IPaggAnonymous count c1
42 IPaggAnonymous count c2

159

4. Result Paper V

4 Result

Setup: Our system is comprised of 6 core, 64 GB of ECC DDR-2 RAM, 1
TeraBytes of storage. The operating system used is Windows 8. Java 1.7
is used to build the model.

Datasets used here are provided by Drawbridge during Kaggle competi-
tion. The datasets consist of relational information about users, devices,
cookies, information on IP addresses and behavior. It consists of different
sets of data. First device table provides basic information of the device.
It provides high-level summary information regarding the device. Draw-
bridge Handle field uniquely identify a person behind the device and cookie.
Device and cookie of the same person will have the same handle. Similarly,
cookie table provides similar information about the cookie. Second, IP
table describes the joint behavior of device or cookie on IP address. One
device or cookie can appear on multiple IPs, so we put all the IPs into a
bag. Third, IP aggregation table provides IP address information. Fourth,
property and property category table provides the information regarding
website (cookie) and mobile app (device) that user has visited before. It
also provides the list of hash values for specific name of the website and
mobile app and the list of categorical information of the websites and
mobile apps. Detailed information for the datasets is provided in the
actual Kaggle competition [1].

0
2

0
0

6
0

0

Record size

T
im

e
 i
n

 s
e

c
s

AFFM with properties
AFFM without properties

0

7
0

0
0

1
4

0
0

0
0

Figure 6: Performance graph comparison of FFM with our model.

160

Paper V 5. Conclusion

AFFM performance is compared with features and without features
in figure 6. The lack of features saves lots of computation memory and
time. Varying the size of training data to evaluate the performance of
the model. The training data consists of 142770 devices and the test file
consists of 61156. There is almost 2.1 million cookies record. Performing
features selection on devices, cookie and IP tables will be time and memory
consuming. One of the team member Gilberto 25 used Decision tree’s but
for this paper, we will focus on the results got from FFM. AFFM provides
better compromise accuracy with good performance. There is always a
trade-off between accuracy and performance.

Regularization is added to our model so that it reduces overfitting. The
AFFM produces a score of 0.864845 in the private Leaderboard. The
actual leaderboard score for the competition is 0.789924, but after the
competition had ended we realized everyone removed -1 value handles, so
trying that approach lead scores to 0.864845. Our model is tested without
properties and the scores in leaderboard is 0.852774.

5 Conclusion

In this paper, we presented our FFM model with auto feature engineering
capability. Our model can perform on the raw datasets. It has inbuilt
ability to calculate the feature in the field and drops the learning rate of
the model. Our model does not read all the unique values of cell present
for that features. The model has a steady learning rate which allows it to
use raw properties of the devices and the cookies. The model provides the
score of 0.864845 in the leaderboard. We are able to improve the model
performance by performing the auto feature engineering and balanced
learning rate. This emphasizes the importance of feature engineering and
learning rate.

References

[1] Kaggle:ICDM 2015. ICDM 2015: Drawbridge Cross-Device Connec-
tions Data Description. url: https://www.kaggle.com/c/icdm-
2015-drawbridge-cross-device-connections/data.

25https://www.kaggle.com/titericz

161

https://www.kaggle.com/c/icdm-2015-drawbridge-cross-device-connections/data
https://www.kaggle.com/c/icdm-2015-drawbridge-cross-device-connections/data

References Paper V

[2] YuChin Juan Yong Zhuang and Wei-Sheng Chin. Field-aware Factor-
ization Machines. url: http://www.csie.ntu.edu.tw/~r01922136/
slides/ffm.pdf.

[3] Yves Kodratoff. Introduction to machine learning. Morgan Kauf-
mann, 2014.

[4] Yucheng Low, Joseph E Gonzalez, Aapo Kyrola, Danny Bickson, Car-
los E Guestrin, and Joseph Hellerstein. “Graphlab: A new framework
for parallel machine learning.” In: arXiv preprint arXiv:1408.2041
(2014).

[5] He Xinran, Pan Junfeng, Jin Ou, Xu Tianbing, Liu Bo, Xu Tao,
Shi Yanxin, Atallah Antoine, Herbrich Ralf, Bowers Stuart, et al.
“Practical lessons from predicting clicks on ads at facebook.” In: Pro-
ceedings of 20th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining. ACM. 2014, pp. 1–9.

[6] John Canny and Huasha Zhao. “Bidmach: Large-scale learning with
zero memory allocation.” In: BigLearning, NIPS Workshop. 2013.

[7] Michael Jahrer, A Toscher, JY Lee, J Deng, H Zhang, and J Spoelstra.
“Ensemble of collaborative filtering and feature engineered models
for click through rate prediction.” In: KDDCup Workshop. 2012.

[8] Steffen Rendle.“Factorization Machines with libFM.”In: ACM Trans.
Intell. Syst. Technol. 3.3 (May 2012), 57:1–57:22. issn: 2157-6904.
doi: 10.1145/2168752.2168771. url: http://doi.acm.org/10.
1145/2168752.2168771.

[9] Bernhard Scholkopf and Alexander J Smola. Learning with kernels:
support vector machines, regularization, optimization, and beyond.
MIT press, 2001.

162

http://www.csie.ntu.edu.tw/~r01922136/slides/ffm.pdf
http://www.csie.ntu.edu.tw/~r01922136/slides/ffm.pdf
http://dx.doi.org/10.1145/2168752.2168771
http://doi.acm.org/10.1145/2168752.2168771
http://doi.acm.org/10.1145/2168752.2168771

Paper VI:
Enrichment of Machine
Learning based Activity
Classification in Smart
Homes using Ensemble
Learning

163

164

Enrichment of Machine Learning based Ac-
tivity Classification in Smart Homes using
Ensemble Learning

B. Agrawal1, A. Chakravorty1, T. Wiktorski1, C. Rong1

1 Department of Electrical Engineering and Computer Science, University of

Stavanger

Abstract:
Data streams from various Internet-Of-Things (IOT) enabled sen-
sors in smart homes provide an opportunity to develop predictive
models to offer actionable insights in form of preventive care to its
residence. This becomes particularly relevant for Aging-In-Place
(AIP) solutions for the care of the elderly. Over the last decade,
diverse stakeholders from practice, industry, education, research,
and professional organizations have collaborated to furnish homes
with a variety of IOT enabled sensors to record daily activities of
individuals. Machine Learning on such streams allows for detection
of patterns and prediction of activities which enables preventive
care. Behavior patterns that lead to preventive care constitute a
series of activities. Accurate labeling of activities is an extremely
time-consuming process and the resulting labels are often noisy
and error prone. In this paper, we analyze the classification
accuracy of various activities within a home using machine learning
models. We present that the use of an ensemble model that
combines multiple learning models allows to obtain better classi-
fication of activities than any of the constituent learning algorithms.

165

1. Introduction Paper VI

1 Introduction

The core concept of smart home environments is to collect information
about their residents through an array of sensors in order to provide
actionable insights about their behavior. The driving factor in this di-
rection is the growing number of the aging population [5]. There has
been a growth in interest in research on sensor networks, techologies, ICT,
data science and services that would enable monitoring daily activities
of indivisuals, provide real time feedback, enable proactive & preventing
care and detect behaviour patterns that could lead to chronic conditions,
such as Alzheimer. In addition, these technologies also aim to reduce
the cost and allow the elderly to live longer in the comfort of their own
homes. Collectively, they can be classified as Aging-In-Place [39, 32] (AIP)
solutions.

The primary component of such AIP solutions are homes furnished
with various internet enabled sensors, such as movement sensors, cameras,
environment sensors and body network sensors (accelerometer, etc.) that
enable the collection of data. The interaction of residents with these
sensors can allow for determination of various activities of daily living.
Activities collected over a time period describe their living behaviour
which, in turn, can open a wide array of possibilities in the form of care
provided to the elderly [21, 19, 36]. Research in activity recognition based
on the interaction with home sensors has emerged as one of the main areas
of investigation for AIP solutions [11, 35]. Activity recognition enables the
identification of various actions performed by indivisuals in their homes,
for example, bathing, using the toilet, sitting on a chair, sleeping and
cooking.

Machine Learning [8] is a study of pattern recognition, computational
intelligence, and computational learning theory that allows to automati-
cally learn and make accurate predictions based on past observations. It
plays a crucial role in activity recognition in smart homes as past true
observations of activity labels for a series of sensor interactions can be used
for classifying future interactions in the same or simillar homes. In fact,
much of the current reseach in activity recognition uses machine learning
to classify sensor interactions into activity labels. However, just machine
learning itself is limited in terms of their classification accuracy as they
are dependent on a specific learning model that is being used. Comparing
multiple machine learning models and combining multiple models that
contribute to the accuracy and gives better results than using those models

166

Paper VI 2. Background

individually [31]. This form of learning is called Ensemble Learning. In
this paper, we demonstrate that ensemble learning performs significantly
better than the majority of smart home projects that use some form of
machine learning for activity recognition. We also compare the accuracy
of different individual models with the ensemble model.

The rest of the paper is structured as follows. Section 2 provides an
introduction to various machine learning models used in our evaluation.
The methodology that is used for the evaluations in terms of ensemble
learning is described in section 3. Section 4 introduces the data used for
the evaluation and presents the results. We discuss the related work in
section 5 and conclude in section 6.

2 Background

Distinct advantages can be derived from different learning strategies. These
strategies are dependent on the complexity of the learned concept, the
structure of the data, the frequency or granularity of the data, the ability
to deal with noisy data and the ability to process continuous or discrete
features. In the following subsections, we provide an overview of machine
learning techniques and progression of such techniques into compounded
methods used for classification of different activities in a smart home.

• Random Forest: Random Forest is an ensemble learning method
for classification and regression which operates by constructing mul-
titude of decision trees at training time [40]. Random Forests grow
many classification trees. To classify a new target from an input
vector, each vector is added down the trees in the forest. Each tree
gives a classification and all trees vote for that particular class. The
forest chooses the classification with the most votes.

• TF-IDF: Tf-idf is term which means frequency-inverse document
frequency, and the tf-idf weight is a weight often used in information
retrieval and text mining [42]. This weight specifies how important a
word is to a given document in the overall collection. The importance
increases proportionally to the number of times a word appears in
the document. TF-IDF are often used by search engines for page
ranking.

• Naive Bayes: A Naive Bayes classifier is a classifier that is based
on the popular Bayes’ probability theorem. They are known for
creating simple yet well performing models, especially in the area of

167

3. Methodology Paper VI

document classification [41].

• k-nearest neighbors: k nearest neighbors is one of the simplest
algorithms that classifies new classes based on distance functions
(e.g.: Manhattan, Euclidean, Minkowski, and Hamming) [20]. KNN
has been widely used in statistical estimation and pattern recognition
since the 1970’s as a non-parametric technique.

• XGBoost: XGBoost is “Extreme Gradient Boosting” [2]. Usually,
a single tree is not strong enough to be used in practice. What is
actually used is the so-called tree ensemble model that sums the
production of multiple trees together. In Graident Boosting, the
error of one tree is adjusted to another, using parameter gradient
in order to offer better prediction for the new tree. XGBoost is
primarily a tree ensemble model.

• Neural Network: A neural network [37], is a network of intercon-
nected processing elements (neurons) that work in unison to solve a
specific problem. They have been inpired by the way a biological
nervous system works and processes information.

• Ensemble: Ensemble learning is the art of combining diverse set
of individual models together to improvise on the stability and
predictive power [18].

3 Methodology

Random Forest

Xgboost

Xgboost

KNN

KNN

raw data

tfidf

Combine

raw data

Xgboost 20 runs

Level-1

Level-2

Figure 1: An overall architecture of our learning ensemble model.
In this section, we present our idea of building an ensemble model

by combining different machine learning models. Additionally, there are
other techniques such as bagging, stacking, and boosting schemes that are

168

Paper VI 3. Methodology

similar to ensemble [38]. However, evaluating all of them is beyond the
scope of this paper.

In ensemble methods, several individual models are combined to form
a single model. The most common approach is taking the average or
weighted average of each model. However, in practice. much advanced and
complex combination techniques are used [34] [9]. Further, an ensemble
model has also been demonstrated to perform extremely well for real world
scenarios [24]. The most popular examples are that of NetFlix Prize Chal-
lenge26 and KDD cup 2015 [1] where more than 100 models were combined
together to achieve better accuracy. The number of machine learning
models to ensemble can be determined by taking the best combination of
n models that are linear [28].

Ensemble methods should have multiple good models with sufficiently
uncorrelated errors. The individual models are normally combined into a
single model as in equation 4.1:

Yens(t) =
1

n

n∑
i=1

M(t) (4.1)

where Yens(t) is the output of the ensemble model, M(t) are the outputs
of the individual models and n is the number of models.

In order to evaluate the classification accuracy of activity recognition
in smart homes, an ensemble model with 2 level ensemble was created, as
shown in figure 1. On level-1, we combine 3 different models (XGBoost,
Random Forest, KNN) on raw datasets and 2 different models (KNN and
XGBoost) on feature extracted datasets. At first, we calculated TF-IDF
of the raw data and then fed it into these models. We combined the
output prediction of all 5 models and used it as a feature for the next
level. Level-2 combined the outputs of all 5 models and used it as input
along with the raw datasets. We used multiple XGBoost runs to achieve
better accuracy.

3.1 Feature Extraction

Feature extraction is an important component for getting better accuracy.
The raw datasets used in our experiments have a set of missing feature data
which is handled by inputting it as the mean column values. Other features
such as mean, standard deviation, minimum, median, and maximum values
of all of the sensors are also extracted. Moreover, the activity labels are

26http://netflixprize.com/

169

4. Emperical Evaluation Paper VI

probabilistic, these labels are averaged over multiple annotators, excluding
0 and 1. The normalization of data between 0 and 1 is done with the use
of a standardization technique. Standardization is a feature that removes
the mean and scales the variable to unit variance [22]. Standarization and
normalization are very common requirements for many machine learning
algorithms which assume that all features are centered around 0 and have
variance in the same order. If a feature has higher variance, it might
dominate the objective function and make the classifier unable to learn
from other features.

3.2 Learning Models

In our ensemble model, we used three types of models: Random Forest,
XGBoost and KNN. The selection of the model is defined by the accuracy
of the individual model and is explained in section 4.2. A combination of
additional models could lead to overfitting [44]. In order to avoid overfitting,
we choose to use to top three models. The input data (section 4.1)
consists of 100 different features which is the combination of 3 sensors:
accelerometer, video and environmental data. Additionally, we added
extra features which vary for each sensor. The output of these models is
combined and fed as feature to another level.

4 Emperical Evaluation

In this section, we describe the raw datasets and present the results which
evaluate and validate our model. It evaluates the accuracy level of activity
classification and investigates the benefits of the ensemble model in activity
identification.

4.1 Data Description:

The activities are identified with the data from three types of sensors;
accelerometer, video (RGB-D), and environmental sensor. The accelerom-
eter is sampled at 20 Hz and is in a raw format. Video data is based
on features extracted from the center of mass and bounding box of the
identified persons. Environmental data consists of Passive Infra-Red (PIR)
sensors, and is provided in a raw format. Detailed data is provided in [4].
Twenty posture activity labels are annotated in the dataset, and described
in table 4.1:

170

Paper VI 4. Emperical Evaluation

Table 4.1: Description of Data

Label Description

a ascend ascent stairs

a descend descent stairs

a jump jump

a loadwalk walk with load

a walk walk

p bent bending

p kneel kneeling

p sit sitting

p lie lying

p squat squatting

p stand standing

t bend stand to bend

t kneel stand kneel to stand

t lie sit lie to sit

t sit lie sit to lie

t sit stand sit to stand

t stand kneel stand to kneel

t stand sit stand to sit

t straighten bend to stand

t turn turn

The prefixes ’a’,’p’, and ’t’ are used as a label to indicate an ambulation
activity, static postures, and posture-to-posture transitions. These labels
are the target variables that need to be classified with the use of train and
test datasets.

Further [4] describes the weights and distribution of these activities
and is demonstrated in figure 2. The Prior Class Distribution displays
prior distribution of the training data for the 20 different activities. It
shows that p sit occurs nearly 20% of the time and some of the other
activities such as p squat, a jump, and a descend occur about less than
2% of the time. The Class Weight graph shows the activity names and
their associated weights. Activities that are performed more frequently
than other activities are weighted less than those performed rarely. The

171

4. Emperical Evaluation Paper VI

activity a jump has the highest weight when compared to activities, such
as p sit and p kneel which are given weights of 0.2 and 1.04, respectively.
This further alludes to the fact that the prediction of rare activities, such
as a jump is 5 times more likely than a frequent activity like sit.

Figure 2: Class weights.

4.2 Evaluation:

The activity classification is performed by combining different models. We
performed feature extraction with the use of TFIDF on the raw datasets
to enchance the accuracy level. The accuracy of 5 different models was
evaluated by executing them over the raw and feature extracted datasets
as shown in table 4.2. The best three models were then choosen to form
an ensemble model. The evaluation of ensemble model is done with the
use of the brier score since the outcome of activities is in a probabilistic
forecast. The brier score is an average of the sum of the squared errors of
a probabilistic prediction [45].The brier score is shown in equation 4.2.

BS =
1

N

N∑
t=1

C∑
c=1

wc(pt,c − at,c)2 (4.2)

where N is the number of test instances, C is the number of classes, wc
is the weight of each class, pt,c is the probability of the predicted output
and at,c is the actual outcome of the event. Therefore, the smaller the
brier score, the higher the accuracy.

172

Paper VI 4. Emperical Evaluation

Table 4.2: Accuracy of a single model on raw and feature extracted datasets

Model datasets brier score

Random Forest raw 0.24

K-NN classifiers raw 0.217

K-NN classifiers tfidf 0.227

Xgboost raw 0.23

Xgboost tfidf 0.232

neural network raw 0.31

neural network tfidf 0.299

naive bayes raw 0.273

naive bayes tfidf 0.266

0.20

0.24

0.28

10 20 30 40 50
Test data size (percentage)

B
rie

r
sc

or
e

Method
Random Forest

XGBoost

Neural Network

KNN

Naive Bayes

Ensemble Model

Figure 3: Brier score of different model with variation of test dataset size from 10%
to 50%.

In figure 3, we compare our model to other machine learning models
(KNN, XGBoost, RandomForest, Naive Bayes, Neural Network). The
average brier score for all activies was measured for each model. The
ensemble model achieves better accuracy accross different training and test
dataset sizes. Its performance deteriorates much slower with the reduction
in the training sizes and has a linear nature.

In order to demonstate the individual activity classification accuracy, the
dataset was split into 80% for training and 20% for testing the ensemble
model. Figure 4 shows the accuracy of the model for classifying the
activities. The model is compared with the actual label present in the
datasets. The overall brier score of our ensemble model is 0.164. It is

173

4. Emperical Evaluation Paper VI

Figure 4: Evaluation of ensemble model on different activities.

able to closely classify rare activties, such as p squat, a jump and others.
However, frequent activities are slightly over- or underestimated.

Figure 5 shows the area under a receiver operating characteristic (ROC)
curve. ROC curve represents the performance of an ensemble model [43].
It shows the estimated sensitivity and specificity for different cutoffs. ROC
curve is ploted against the false positive rate (FPR) on the x-axis and the
true positive rate (TPR) on the y-axis. The grey (45-degree) diagonal line
represents the average performance of a Uniform (0, 1) random variable.
The further away a line is from the diagonal line (in terms of sensitivity),
the better the accuracy. Overall, gain in sensitivity (true positive rate) is
> 86%.

The ROC curve can be combined into a single value by calculating the
convex shape in ROC curve to get AUC (Area Under Curve). The AUC
of our model is 0.869. The optimal point in ROC curve is (FPR,TPR)
= (0, 1) which means that a curve has no false positive. In the figure,
activities, such as psquat and ajump have low AUC value because these
activities are rare and the training datasets have very limited patterns for
such activities.

174

Paper VI 5. Related Work

Specificity

S
e
n

s
it
iv

it
y

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1.0 0.8 0.6 0.4 0.2 0.0

a_ascend

a_descend

a_jump

a_loadwalk

a_walk

Specificity

S
e
n

s
it
iv

it
y

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1.0 0.8 0.6 0.4 0.2 0.0

p_bent

p_kneel

p_lie

p_sit

p_squat

Specificity

S
e

n
s
it
iv

it
y

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1.0 0.8 0.6 0.4 0.2 0.0

p_stand

t_bend

t_kneel_stand

t_lie_sit

t_sit_lie

Specificity

S
e

n
s
it
iv

it
y

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1.0 0.8 0.6 0.4 0.2 0.0

t_sit_stand

t_stand_kneel

t_stand_sit

t_straighten

t_turn

Figure 5: Area under a receiver operating characteristic (ROC) curve for evaluating
the ensemble model.

5 Related Work

There has been ample research on machine learning models used for activity
recognition in smart homes. Recognition and detection of human activities
have been addressed with neural network models [3, 35, 23, 12], decision
trees [6, 35, 16], bayes classifiers [6, 7, 35], random forests [13, 6, 29],
support vector machines [6, 15, 25, 10], adaptive boosting [6, 29] and
K-NN classifiers [30, 27].

However, using a single model is still the prime challenge for machine
learning in smart homes. It can be attributed to the variance in the
deployment context in which learning takes place. Alternatively, ensemble
learning addresses these challenges as it combines multiple models. It
uses the output of one or multiple model(s) depending on their accuracy
as feature(s) to another [33]. The research in the direction of combining
multiple machine learning models into an ensemble learning model for

175

6. Conclusion Paper VI

activity recognition in smart homes is quite novel. It is limited with some
contirbutions from [26, 14, 17].

6 Conclusion

In this paper, we discussed the importance of activity recognition for
smart homes. Different machine learning techniques have been described
in literature to classify activities of residents, based on their interaction
with their home sensors. However, a number of challenges and limitations
were identified in these approaches. In practice, no single machine learning
model can achieve an acceptable level of accuracy on a given dataset. To
overcome the limiations of such existing work, we proposed an alternative
state-of-the-art ensemble model. The output of multiple classifiers was
fed into an ensemble model as input. It achieved a better classification
performance as compared with individual classifiers. We demonstrated
that our ensemble model outperformed other techniques. Further, we
evaluated the result with a ROC curve which indicated that all classified
activities were more closer to true positives.

References

[1] R blogger. KDD Cup 2015: The story of how I built hundreds of
predictive models.And got so close, yet so far away from 1st place.
url: https://www.r-bloggers.com/kdd-cup-2015-the-story-
of-how-i-built-hundreds-of-predictive-models-and-got-

so-close-yet-so-far-away-from-1st-place/.

[2] Tianqi Chen and Carlos Guestrin. “Xgboost: A scalable tree boosting
system.” In: arXiv preprint arXiv:1603.02754 (2016).

[3] Homay Danaei Mehr, Huseyin Polat, and Aydin Cetin. “Resident
activity recognition in smart homes by using artificial neural net-
works.” In: 2016 4th International Istanbul Smart Grid Congress
and Fair (ICSG). IEEE. 2016, pp. 1–5.

[4] Niall Twomey, Tom Diethe, Meelis Kull, Hao Song, Massimo Cam-
plani, Sion Hannuna, Xenofon Fafoutis, Ni Zhu, Pete Woznowski,
Peter Flach, et al. “The SPHERE Challenge: Activity Recognition
with Multimodal Sensor Data.” In: arXiv preprint arXiv:1603.00797
(2016).

176

https://www.r-bloggers.com/kdd-cup-2015-the-story-of-how-i-built-hundreds-of-predictive-models-and-got-so-close-yet-so-far-away-from-1st-place/
https://www.r-bloggers.com/kdd-cup-2015-the-story-of-how-i-built-hundreds-of-predictive-models-and-got-so-close-yet-so-far-away-from-1st-place/
https://www.r-bloggers.com/kdd-cup-2015-the-story-of-how-i-built-hundreds-of-predictive-models-and-got-so-close-yet-so-far-away-from-1st-place/

Paper VI References

[5] David E Bloom, David Canning, and Alyssa Lubet. “Global popula-
tion aging: Facts, challenges, solutions & perspectives.” In: Daedalus
144.2 (2015), pp. 80–92.

[6] Diane J Cook, Maureen Schmitter-Edgecombe, and Prafulla Dawadi.
“Analyzing Activity Behavior and Movement in a Naturalistic En-
vironment using Smart Home Techniques.” In: IEEE journal of
biomedical and health informatics 19.6 (2015), pp. 1882–1892.

[7] Tom Diethe, Niall Twomey, and Peter Flach. “Bayesian active trans-
fer learning in smart homes.” In: ICML Active Learning Workshop.
Vol. 2015. 2015.

[8] Rob Schapire. “Machine learning algorithms for classification.” In:
Princeton University 10 (2015).

[9] Manuel Woniak Micha land Graña and Emilio Corchado. “A Survey
of Multiple Classifier Systems As Hybrid Systems.” In: Inf. Fusion
16 (Mar. 2014), pp. 3–17. issn: 1566-2535. doi: 10.1016/j.inffus.
2013.04.006. url: http://dx.doi.org/10.1016/j.inffus.2013.
04.006.

[10] Diane J Cook, Aaron S Crandall, Brian L Thomas, and Narayanan C
Krishnan. “CASAS: A smart home in a box.” In: Computer 46.7
(2013).

[11] Liming Chen, Chris D Nugent, and Hui Wang. “A knowledge-driven
approach to activity recognition in smart homes.” In: IEEE Trans-
actions on Knowledge and Data Engineering 24.6 (2012), pp. 961–
974.

[12] Liyanage C De Silva, Chamin Morikawa, and Iskandar M Petra.
“State of the art of smart homes.” In: Engineering Applications of
Artificial Intelligence 25.7 (2012), pp. 1313–1321.

[13] Ahmad Jalal, Jeong Tai Kim, and Tae-Seong Kim. “Human activity
recognition using the labeled depth body parts information of depth
silhouettes.” In: Proceedings of the 6th International Symposium on
Sustainable Healthy Buildings, Seoul, Korea. 2012, pp. 1–8.

[14] Chao Chen, Barnan Das, and Diane J Cook. “A data mining frame-
work for activity recognition in smart environments.” In: Intelligent
Environments (IE), 2010 Sixth International Conference on. IEEE.
2010, pp. 80–83.

177

http://dx.doi.org/10.1016/j.inffus.2013.04.006
http://dx.doi.org/10.1016/j.inffus.2013.04.006
http://dx.doi.org/10.1016/j.inffus.2013.04.006
http://dx.doi.org/10.1016/j.inffus.2013.04.006

References Paper VI

[15] Anthony Fleury, Michel Vacher, and Norbert Noury. “SVM-based
multimodal classification of activities of daily living in health smart
homes: sensors, algorithms, and first experimental results.” In: IEEE
transactions on information technology in biomedicine 14.2 (2010),
pp. 274–283.

[16] Eunju Kim, Sumi Helal, and Diane Cook. “Human activity recog-
nition and pattern discovery.” In: IEEE Pervasive Computing 9.1
(2010), pp. 48–53.

[17] Parisa Rashidi and Diane J Cook. “Multi home transfer learning for
resident activity discovery and recognition.” In: KDD Knowledge
Discovery from Sensor Data (2010), pp. 56–63.

[18] Lior Rokach. “Ensemble-based classifiers.” In: Artificial Intelligence
Review 33.1-2 (2010), pp. 1–39.

[19] Marie Chan, Eric Campo, Daniel Estève, and Jean-Yves Fourniols.
“Smart homes—current features and future perspectives.” In: Matu-
ritas 64.2 (2009), pp. 90–97.

[20] Leif E Peterson. “K-nearest neighbor.” In: Scholarpedia 4.2 (2009),
p. 1883.

[21] Marie Chan, Daniel Estève, Christophe Escriba, and Eric Campo.
“A review of smart homes—Present state and future challenges.”
In: Computer methods and programs in biomedicine 91.1 (2008),
pp. 55–81.

[22] Andreas Stolcke, Sachin Kajarekar, and Luciana Ferrer. “Nonpara-
metric feature normalization for SVM-based speaker verification.”
In: 2008 IEEE International Conference on Acoustics, Speech and
Signal Processing. IEEE. 2008, pp. 1577–1580.

[23] Huiru Zheng, Haiying Wang, and Norman Black. “Human activity
detection in smart home environment with self-adaptive neural
networks.” In: Networking, Sensing and Control, 2008. ICNSC 2008.
IEEE International Conference on. IEEE. 2008, pp. 1505–1510.

[24] Robert M Bell and Yehuda Koren. “Lessons from the Netflix prize
challenge.” In: ACM SIGKDD Explorations Newsletter 9.2 (2007),
pp. 75–79.

[25] Oliver Brdiczka, Patrick Reignier, and James L Crowley. “Detecting
individual activities from video in a smart home.” In: International
Conference on Knowledge-Based and Intelligent Information and
Engineering Systems. Springer. 2007, pp. 363–370.

178

Paper VI References

[26] Donghai Guan, Weiwei Yuan, Young-Koo Lee, Andrey Gavrilov,
and Sungyoung Lee. “Activity recognition based on semi-supervised
learning.” In: 13th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA 2007).
IEEE. 2007, pp. 469–475.

[27] Clemens Lombriser, Nagendra B Bharatula, Daniel Roggen, and Ger-
hard Tröster. “On-body activity recognition in a dynamic sensor net-
work.” In: Proceedings of the ICST 2nd international conference on
Body area networks. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering). 2007, p. 17.

[28] Christopher M. Bishop. Pattern Recognition and Machine Learning
(Information Science and Statistics). Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 2006. isbn: 0387310738.

[29] Tran The Truyen, Dinh Q Phung, Svetha Venkatesh, and Hung Hai
Bui.“Adaboost. mrf: Boosted Markov random forests and application
to multilevel activity recognition.” In: 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’06).
Vol. 2. IEEE. 2006, pp. 1686–1693.

[30] Ling Bao and Stephen S Intille. “Activity recognition from user-
annotated acceleration data.” In: International Conference on Per-
vasive Computing. Springer. 2004, pp. 1–17.

[31] Rich Caruana, Alexandru Niculescu-Mizil, Geoff Crew, and Alex
Ksikes. “Ensemble selection from libraries of models.” In: Proceedings
of the twenty-first international conference on Machine learning.
ACM. 2004, p. 18.

[32] Eric Dishman. “Inventing wellness systems for aging in place.” In:
Computer 37.5 (2004), pp. 34–41.

[33] Saso Dzeroski and Bernard Ženko. “Is Combining Classifiers with
Stacking Better than Selecting the Best One?” In: Machine Learning
54.3 (2004), pp. 255–273. issn: 1573-0565. doi: 10.1023/B:MACH.
0000015881.36452.6e. url: http://dx.doi.org/10.1023/B:
MACH.0000015881.36452.6e.

[34] Ludmila I Kuncheva. “Classifier ensembles for changing environ-
ments.” In: International Workshop on Multiple Classifier Systems.
Springer. 2004, pp. 1–15.

179

http://dx.doi.org/10.1023/B:MACH.0000015881.36452.6e
http://dx.doi.org/10.1023/B:MACH.0000015881.36452.6e
http://dx.doi.org/10.1023/B:MACH.0000015881.36452.6e
http://dx.doi.org/10.1023/B:MACH.0000015881.36452.6e

References Paper VI

[35] Emmanuel Munguia Tapia, Stephen S Intille, and Kent Larson. “Ac-
tivity recognition in the home using simple and ubiquitous sensors.”
In: International Conference on Pervasive Computing. Springer.
2004, pp. 158–175.

[36] Frances K Aldrich. “Smart homes: past, present and future.” In:
Inside the smart home. Springer, 2003, pp. 17–39.

[37] David JC MacKay. Information theory, inference and learning algo-
rithms. Cambridge university press, 2003.

[38] Ron Meir and Gunnar Rätsch. “An introduction to boosting and
leveraging.” In: Advanced lectures on machine learning. Springer,
2003, pp. 118–183.

[39] SL Bernard, S Zimmerman, and JK Eckert. “Aging in place.” In:
Assisted living 224 (2001), p. 241.

[40] Leo Breiman. “Random forests.” In: Machine learning 45.1 (2001),
pp. 5–32.

[41] Irina Rish. “An empirical study of the naive Bayes classifier.” In:
IJCAI 2001 workshop on empirical methods in artificial intelligence.
Vol. 3. 22. IBM New York. 2001, pp. 41–46.

[42] Joel Larocca Neto, Alexandre D Santos, Celso AA Kaestner, Neto
Alexandre, D Santos, et al. “Document clustering and text summa-
rization.” In: (2000).

[43] Andrew P Bradley. “The use of the area under the ROC curve in the
evaluation of machine learning algorithms.” In: Pattern recognition
30.7 (1997), pp. 1145–1159.

[44] Igor V Tetko, David J Livingstone, and Alexander I Luik. “Neural
network studies. 1. Comparison of overfitting and overtraining.” In:
Journal of chemical information and computer sciences 35.5 (1995),
pp. 826–833.

[45] Allan H Murphy. “A new vector partition of the probability score.”
In: Journal of Applied Meteorology 12.4 (1973), pp. 595–600.

180

	List of Papers
	Introduction
	Motivation
	Organization

	Background
	Big Data
	The Large-Scale Distributed Processing
	Big Data Technologies
	Hadoop
	HBase
	OpenTSDB
	R and RHIPE
	Apache Spark
	Apache Kafka

	Data Science
	Machine Learning
	Hidden Markov Models
	Robust PCA (Principal Component Analysis)
	Ensemble
	FM (Factorization Machines)
	Random Forest
	TF-IDF
	Naive Bayes
	K-nearest neighbors
	XGBoost
	Neural Network
	Feature Engineering

	Cloud Computing

	Contributions
	Research Questions
	Overview
	Application Layer
	Analytic Layer
	Big Data Processing Layer
	Infrastructure Layer
	Security Layer

	Paper I: R2Time: A framework to analyse OpenTSDB timeseries data in HBase.
	Paper II: Analyzing and Predicting Failure in Hadoop Clusters Using Distributed HMM.
	Paper III: Secure Deletion in Hadoop Distributed File System.
	Paper IV: Adaptive Anomaly Detection in Cloud using Robust and Scalable Principal Component Analysis.
	Paper V: AFFM:Auto Feature Engineering in FFM for Predictive Analytics.
	Paper VI: Enrichment of Machine Learning based Activity Classification in Smart Homes using Ensemble Learning.

	Conclusion and Future Work
	Conclusion
	Future Work

	Paper I: R2Time: a framework to analyse OpenTSDB timeseries data in HBase.
	Introduction
	Background
	Hadoop
	HBase
	OpenTSDB
	R and RHIPE

	Design And Implementation
	Row Key Design
	Data Retrieval

	Result And Analysis
	Performance of Statistical Functions
	Scalability Test
	Performance based on Scan Cache

	Related Work
	Conclusion

	Paper II: Analyzing and Predicting Failure in Hadoop Clusters Using Distributed Hidden Markov Model
	Introduction
	Related work
	Our Contribution
	Paper Structure

	Background
	Hadoop
	Hidden Markov Models

	Approach
	Result
	Types of error
	Predicting failure state in Hadoop cluster.
	Scalability

	Conclusion

	Paper III: SD-HDFS: Secure Deletion in Hadoop Distributed File System
	Introduction
	Our Contribution
	Related Work
	Paper Structure

	Background
	Hadoop:
	Apache Common:
	Fourth Extended Filesystem (Ext4):

	Approach
	Result
	Data Consistency
	Secure Deletion
	Execution Time

	Conclusion

	Paper IV: Adaptive Anomaly Detection in Cloud using Robust and Scalable Principal Component Analysis
	Introduction
	Our Contribution
	Related Work
	Paper Structure

	BACKGROUND
	Robust PCA (Principal Component Analysis):
	Spark:
	Hadoop:

	APPROACH
	EMPIRICAL EVALUATION
	Anomaly Detection:
	Accuracy Test:
	Scalability test:
	Benchmark test:

	Conclusion

	Paper V: AFFM: Auto Feature Engineering in Field-Aware Factorization Machines for Predictive Analytics
	Introduction
	Our Contribution
	Paper Structure
	Related Work

	Background
	FM (Factorization Machines):
	Feature Engineering:

	Approach
	FFM Learning rate:
	Feature Engineering:

	Result
	Conclusion

	Paper VI: Enrichment of Machine Learning based Activity Classification in Smart Homes using Ensemble Learning
	Introduction
	Background
	Methodology
	Feature Extraction
	Learning Models

	Emperical Evaluation
	Data Description:
	Evaluation:

	Related Work
	Conclusion

