
got HW crypto?
On the (in)security of a Self-Encrypting

Drive series

Finse Winter School 2018
Gunnar Alendal

Speakers intro

Gunnar Alendal:
Cand.Scient (old skool) in Cryptography from the University of Bergen,
UiB, Norway.

Reverse engineering anything with an opcode; x86, x64, ARM, MIPS,
M68k, ARC, 8051, ..

Security researcher with 18+ years of professional experience.

2

Talk motivation

● “Old” research from 2015 (eprint 2015/1002)

● Still very relevant
● Everything is a SoC ⇒ “FW is the new SW”
● HW/FW less exposed to security research

● Rarely open source ⇒ Reverse engineering

3

Research motivation

is HW crypto more secure?

JMS538S SW6316 OXUF943SE INIC-1607E
x x x x

4

x x
JMS569 INIC-3608

Western Digital My Passport / Book

● Self-encrypting external HDD series*

● Crypto done in either:
1. 1st-gen : USB/FW-to-SATA bridge
2. 2nd-gen : HDD itself

● Can’t fit everything in talk ⇒ read full paper

* Some models don’t support encryption5

Generic setup

6

Different USB bridges researched
Vendor Model (1st-gen/2nd-gen) Architecture

JMicron JMS538S Intel 8051

Symwave SW6316 Motorola M68k

PLX OXUF943SE ARM7

Initio INIC-1607E Intel 8051

Initio INIC-3608 ARC 600

JMicron JMS569 Intel 8051

7

Overall security design

● User PW ⇒ Key-Encryption-Key (KEK):
○ KDF(salt+PW) = KEK
○ salt + KDF iterations are constant in SW

● KEK protects Data-Encryption-Key (DEK)

● DEK = holy long-term HW AES Key

8

1st-gen bridges
w/AES

9

Overall security design

10

The protected DEK - eDEK

● a KEK-encrypted blob containing the raw
DEK

● eDEK stored on disk + USB bridge EEPROM
○ EEPROM is marked “U14” on most PCBs

● retrieve eDEK ⇒ off-device pw brute force

11

Authentication - JMS538S/INIC-1607E

12

Mandatory HW encryption

● No PW set ⇔ hardcoded KEK unlocks DEK

● Hardcoded KEK = “PI” AES-256 key

03 14 15 92 65 35 89 79 32 38 46 26 43 38 32 79
FC EB EA 6D 9A CA 76 86 CD C7 B9 D9 BC C7 CD 86

13

data recovery

● no pw + broken USB bridge? no problem:
○ eDEK stored on HDD + EEPROM
○ decrypt eDEK with “PI” KEK ⇒ DEK decrypts HDD

● pw set? off-device brute force
○ Constant salt + KDF iteration counter
○ GPU-impl. benchmark: ~1 mill pw/s (single card)
○ Pre-calculated hash/rainbow-table

14

Retrieve the eDEK: “no eeprom for you”

● no EEPROM on boot..

● ⇒ raw USB-to-SATA

bridge or “DFU mode”

● ⇒ read eDEK from HDD
VID/PID: 1058/0748
Bridge: JMS538S

15

Retrieve the eDEK
● JMS538S - “no eeprom for you”

● SW6316 - PC-3k / “no eeprom for you”

● OXUF943SE - SATA + hidden eDEK sector

● INIC-1607E - “no eeprom for you” + 3-byte

FW patch to dump eDEK

16

Attackers progress...
Model no pw set,

recovery
pw brute force break auth. crack DEK

JMS538S ✓ ✓

SW6316 ✓ ✓

OXUF943SE ✓ ✓

INIC-1607E ✓ ✓

17

Breaking auth. - aka. backdoors

● Two 1st-gen chips fail on authentication

● SW6316 stores the KEK in EEPROM/HDD

○ Protection: Hardcoded key (0x29A2607A..)

● OXUF943SE saves a “PI” encrypted eDEK

○ Protection: Hardcoded key (0x03141592..)

18

SW6316 authentication/backdoor

19

Attackers progress...
Model no pw set,

recovery
pw brute
force

break auth. crack DEK

JMS538S ✓ ✓

SW6316 ✓ ✓ ✓

OXUF943SE ✓ ✓ ✓

INIC-1607E ✓ ✓

20

..but before we crack DEKs:

2nd-gen bridges
with no AES

21

Initio INIC-3608 / JMicron JMS 569

● no HW AES in USB bridge

● HDD does crypto:
○ “ATA Security feature Set”; ATA 0xF1, 0xF2, ...

● VSC “status” (0xC045) reports only cipher
mode 0x30 (FDE)

22

INIC-3608 backdoor

● INIC-3608 does authentication, no crypto

● EEPROM, U14, contains the raw KEK(!)

● Dump EEPROM ⇒ Get KEK ⇒ authenticate

● ..or get KEK with secret VSC ⇒ authenticate

23

INIC-3608 authentication

24

INIC-3608 backdoor

25

INIC-3608 Backdoor
DEMO

26

JMicron JMS569

● Connect to pc3k in kernel-mode
○ Get privileges as always by bit shifting
○ Erase ATA-module XX
○ HDD unlocks, decrypting everything on the fly

● By now, pc3k found their own way
○ Details in the forums

27

Attackers progress...
Model no pw set, recovery pw brute force break auth. crack DEK

JMS538S ✓ ✓

SW6316 ✓ ✓ ✓

OXUF943SE ✓ ✓ ✓

INIC-1607E ✓ ✓

INIC-3608 ✓ ✓ ✓

JMS569 ✓ ✓

28

JMS538S and INIC-1607E
still standing tall*

* From the devices available to the researchers29

Recap: Authentication - JMS538S

brute force? :(

brute force??

30

Crack DEK directly?

● How is the HW AES-256 DEK created?

● Entropy source?

● can we beat a 2256 complexity?

31

DEK creation ⇒ device “erase”

● How is the DEK created on a device “erase”?
○ aka. “I forgot my password”

● Entropy source(s)?

● Can we assume the factory uses this “erase”
command?

32

DEK creation by device “erase”

● “erase” VSC: CDB[0:1] = 0xC1E3

● 2 entropy sources:
○ host computer ⇒ Key material source 1
○ on-board RNG ⇒ Key material source 2

33

JMS538S “erase” VSC

34

JMS538S on-board RNG

● Implemented in chip “somewhere”

● Gather samples and plot

● Gather by “status” (4 bytes) or “erase” (32
bytes) VSC

35

/dev/urandom - 32-bit x 10 000

36

JMS538S “status” unmask x 10 000

37

JMS538S on-board RNG

● “status” command masks RNG output:
○ xor with 0x271828af

● “erase” uses raw RNG - no mask

● RNG turns out to be a 8-bit LFSR with
period 255

38

JMS538S on-board RNG

● ..eh, a RNG with period of 255?!

● ..adding a poor ~28 to the complexity!

● ..so we have total 232 x ~28 = ~240
complexity!

39

JMS538S “erase” attack

● You erase the drive + set sooper pw

● We recover the DEK with 240 complexity
○ ~236 if set from a MAC

● ..done in “no time” on any computer

40

JMS538S “erase” VSC

41

JMS538S factory keys

● “most people don’t erase their drives”

● ..so what about the factory set DEKs?

● Does the factory use the “erase” command?

42

JMS538S factory keys analysis

● Grab factory set DEK from an eDEK +
reverse the “erase” command flow

● Generate 255 possible “Host provided key
material” (source 1)

● Find the correct one by guessing…?

43

JMS538S factory keys - RNG leak

● The default out-of-the-box eDEK leaks

● Decrypted eDEK leaks RNG status at
creation time

● … which is the same time as DEK creation!

44

decrypted factory eDEK - RNG leak
Magic 0x00: "DEK1"
CRC 0x04: 3f97
Unknown 0x06: 0000
random1 0x08: b1f065be
key 0x3ee2 128 bit 0x0c: dde91629a8f503a41847e9956386a5d3
random2 0x1c: 2aa98576
key 0x3ef2 128 bit 0x20: fea9c0d0ad395397772420a0563a604b
random3 0x30: 074195db
key 0x3f02 256 bit 0x34:
3b00e300f7002700e1004d003800040069003e00d70048000c00bb0042006400
random4 0x54: 8e832cf3
key size (byte) 0x58: 20 => 256 bits
Unknown 0x59: 00000000000000

factory DEK

RNG status leak

45

JMS538S factory keys - RNG leak

● The default out-of-the-box eDEK says it all

● It gives the raw DEK

● + the state of the RNG after DEK creation

● ⇒ We know the host provided key material!

46

example host provided key material
Raw stream: 14 F9 DD 69 49 81 D4 63 CE 22 30 51 23 1B 2C 18 28 3B
3D 15 0F 3F 98 39 E4 C3 1F 4A 57 F3 9A 79

Little endian, 32-bit values: 69DDF914 63D48149 513022CE 182C1B23
153D3B28 39983F0F 4A1FC3E4 799AF357

srand(0x4fd45d3f) ⇐ Seed with this...
rand() ⇒ 69DDF914 ⇐ ... and get these
rand() ⇒ 63D48149 ⇐ ...
..
rand() ⇒ 799AF357 ⇐ ...

47

example host provided key material

● srand(0x4fd45d3f) is the entropy source

● 0x4fd45d3f⇒ UNIX time

● 0x4fd45d3f⇒ 2012-06-10 08:39:27 UTC

● It was on a Sunday ..and it was sunny

48

DEK created: 10 JUN 2012 08:39:27 UTC

Ouch!

HDDs have a
printed
production
date..

49

JMS538S factory DEK attack

● a single 128-bit known-plaintext AES block
needed from HDD ⇒e.g. EDEK(00..00)

● Recover the 256-bit DEK with 236
complexity:
○ Brute force creation time (2007 - 2015) + RNG state

50

JMS538S factory DEK attack

● ..done in “no time” on any computer

● ..or instant with a 1.2 TB lookup-table!
○ pre-gen all 236 possible factory DEKs

○ store EDEK(00..00) + seed + RNG idx

51

JMS538S factory DEK attack
DEMO

52

Attackers progress...
Model no pw set, recovery pw brute force break auth. crack DEK

JMS538S ✓ ✓ ✓

SW6316 ✓ ✓ ✓

OXUF943SE ✓ ✓ ✓

INIC-1607E ✓ ✓ (✓)

INIC-3608 ✓ ✓ ✓

JMS569 ✓ ✓

53

badUSB and evil-maid?

54

No FW signing ⇒ security problems

● can patch FW devices, pre authentication ⇒
bad, bad USB

● ..resulting in spreading of evilness
○ malware in 8051, M68k and ARC. Infect-on-the-fly.
○ no easy clean (self-protecting evil FW)
○ add crypto backdoor
○ nullifying poor auth. schemes

55

Summary

● All 6 bridges analyzed had serious security
vulnerabilities

● 3 bridges have backdoors, 2 weak key
setup, 1 broken auth.

● All 6 vulnerable to unauthorized FW
patching ⇒ badUSB, evil-maid, ..

56

Thank You, WD and EFF

Questions?

57

