Making decryption accountable

Mark Ryan

HP Inc Labs, Bristol Univ. of Birmingham

Secure Implementation of Cryptographic Software Lesbos, Greece August 2017

> Twenty-fifth International Workshop on Security Protocols (SPW'17) 21 March 2017

> > HotSpot at ETAPS 23 April 2017

Going out tonight?

- Teenager wants privacy
- Parent wants security

Investigatory Powers Act 2016

- Gives Gov wideranging snooping and interference powers
- Oversight is unverifiable
- Making decryption accountable is potentially a step towards verifiable oversight

Corporate email

- Corporation may need to access employee email
- But employees may expect some transparency

$\Theta \Theta \Theta$			New Update.				\bigcirc	
Get Mail		Reply All	↓ Forward	Assign Topic	Archive	O elete	2 Write	
New Update. From LHSBC 13/01/2011 20:34 Topics								
HSF	3C							
1101			The world	s local bank				
Dear Customer	r,							
Due to recent up customer satisfa				o enhance our onl n.	line service	es and		
You are required and enjoy the ne				account to enable	you to ha	ve access		
You will be prov	idod with	a stone to u	narada cimal	v login to your acc	ount hele	v to got start	od	

STANFORD UNIVERSITY							
Mail 🔓 Address Book 📄 🛛 🔽 Tasks 🎲 Preferences							
Folders	🖂 Send 🔻 🗙 Cancel 🛛 🖓 Save Draft 🥔 Add A						
🕹 Inbox (76345)	Send [Ctrl+Enter]						
Drafts (47							
🧒 Junk (186)	salamora.edu **						
Trash	Cc:						
apple Mail To Do							
Deleted Messages	Subject: Important email						
INBOXSent Messages							
🛅 Journal	Lorem ipsum dolor sit amet, consect						
🛅 Junk E-mail	ornare tristique. Morbi molestie ve						
🛅 Notes 🛛 🔰	adipiscing a, sodales sed dui. Fusc lectus ac tellus. Sed sem elit, auc						
RSS Feeds	dignissim felis lobortis ac. Fusce						
Sent Messages	tortor elit, elementum nec tincidur						

Mobile phone and IoT sensor data

- "Find my iphone" requires you to continuously send your location to Apple
 - You'd get to know when they decrypt it
- More generally, decryption accountability potentially enables detection of policy violations in IoT sensor data.

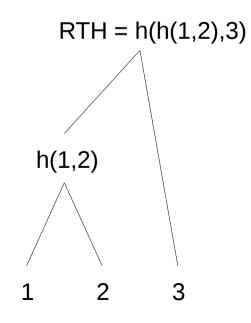
Electronic voting

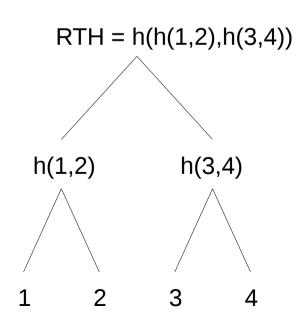
- Voter's client software encrypts her vote, using a public key pk, and sends it to server.
- ... mix nets ... homomorphic combination ... verification of zkps ...
- The result is decrypted, using the secret key sk corresponding to pk.
 - We'd like to know that individual voters' votes are not decrypted.

Requirements

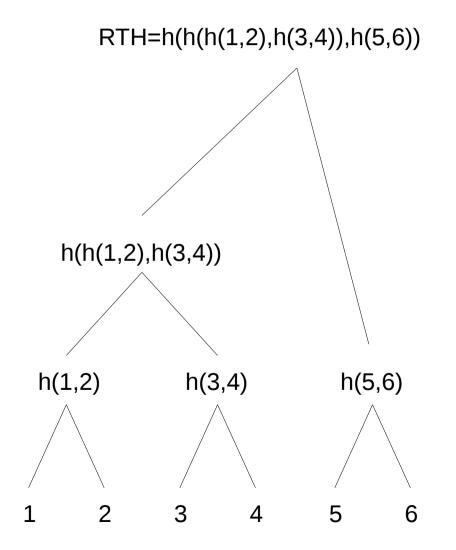
- Users create ciphertexts using a public key *pk*.
- Decrypting agent *Y* is capable of decrypting the ciphertexts *without any help from the users*.
- When Y decrypts ciphertexts, it unavoidably creates evidence e that is accessible to users. The evidence cannot be suppressed or discarded without detection.
- By examining *e*, users gain some information about the quantity and nature of the decryptions being performed.

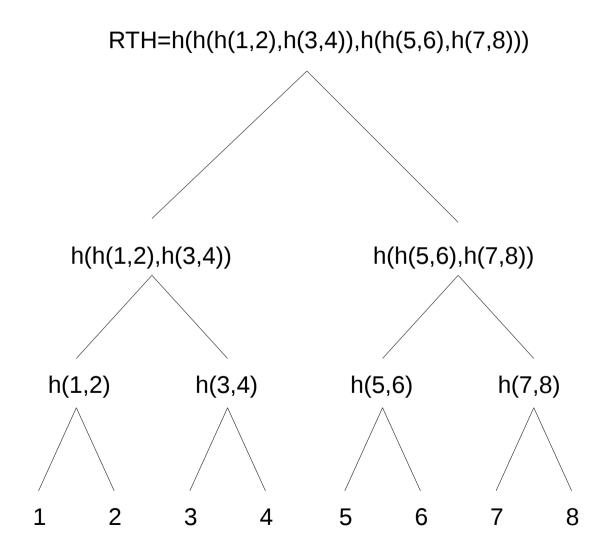
This requires hardware

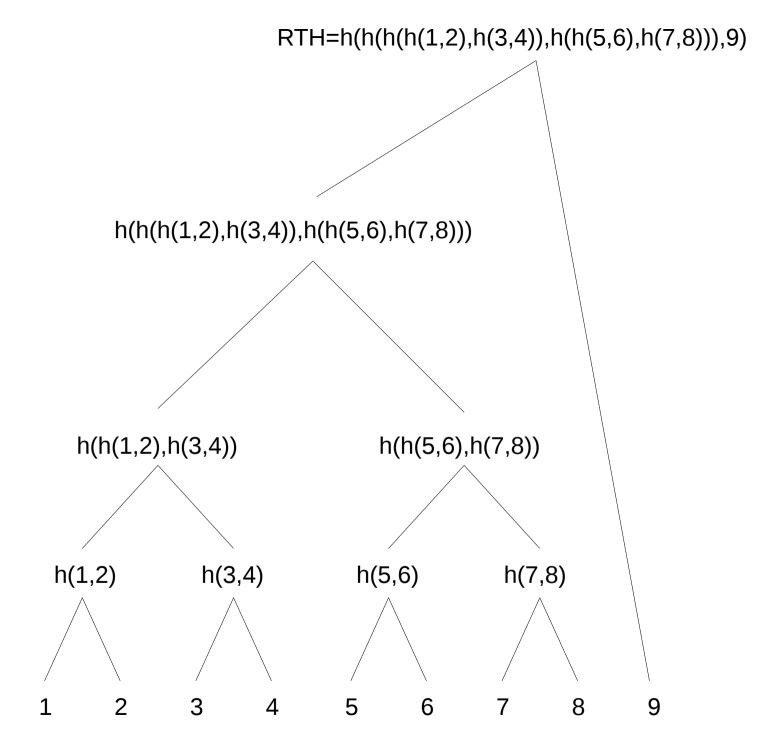

- If Y has a ciphertext and a decryption key, it is impossible to detect whether she applies the key to to ciphertext or not.
 - The decryption key has to be guarded by a hardware device D that controls its use.
- What is a minimal specification for D that will give us the desired properties?
- Idea of this paper: propose a simple generic design that achieves the desired functionality.

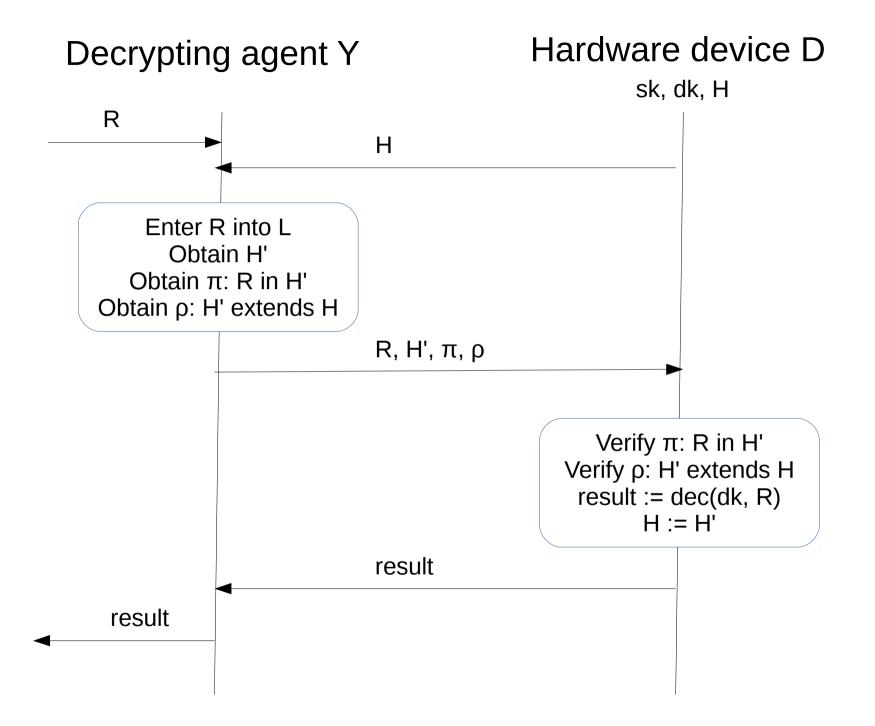

Core idea

- There is a log L in which all decryption requests are recorded.
 - D will perform a decryption only if the request is accompanied by a proof that it has been entered into L.
- Someone maintains L, but we minimise the requirement to trust that maintainer.
 - The maintainer of L is not required to be trusted w.r.t. *integrity* of L. If the maintainer cheats, e.g. by deleting/modifying entries from L, or by forking L, users can detect that.
 - The maintainer is required to be trusted for *confidentiality*, so we design L so that confidentiality isn't required.


The log L

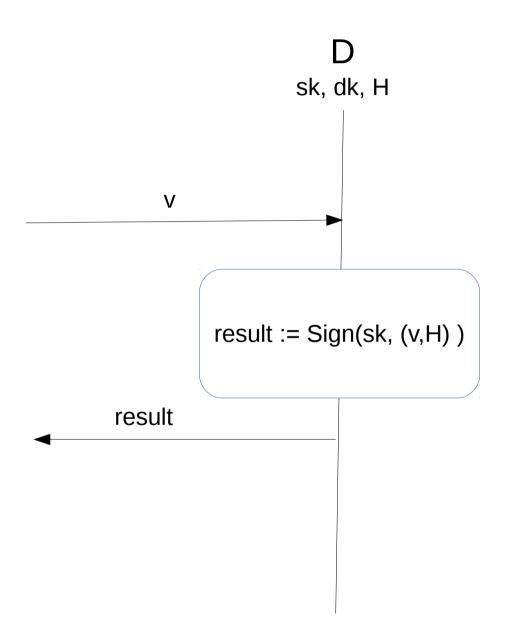

- The log L is organised as an append-only Merkle tree
 - as used in, for example, certificate transparency
- The maintainer periodically publishes the root tree hash (RTH) H of L





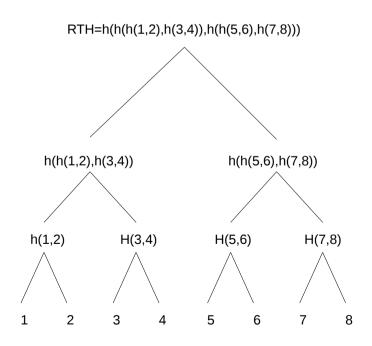
The log L

- The log L is organised as an append-only Merkle tree
 - as used in, for example, certificate transparency
- The maintainer periodically publishes the root tree hash (RTH) H of L
- The maintainer is capable of generating two kinds of proof about the log's behaviour:
 - A proof π that some data item d is in the tree with RTH H
 - A proof ρ that the tree with RTH H' is an append-only extension of the tree with RTH H
- All the ops, incl gen and verif of proofs, are O(log n)

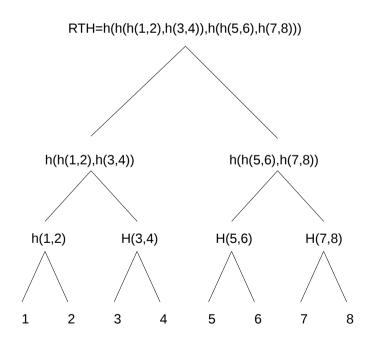

Evidence of decryption in L

- Evidence about decryptions is obtained by inspecting L, which contains the decryption requests.
 - Example 1: L contains a hash of the ciphertext that is decrypted. This allows a user U to detect if ciphertexts she produced have been decrypted.
 - Example 2: L contains a unique value representing the decrypted ciphertext, but the value cannot be tied to a particular ciphertext (for example, the value could be the hash of a re-encryption). This allows users to see the number of ciphertexts decrypted, but not which particular ones.

Insecure!


- The log provider could maintain two versions of the log:
 - The one it shows to users: it has no decryption requests in it, so users are happy
 - The one it shows to D: it has lots of decryption requests in it, so D decrypts a lot of data
- The users and D each verify that the version they see is maintained append-only. But they can't detect that they are different versions.
- The usual way of addressing this attack is "gossip protocols".
 - Doesn't work here.

- To defeat the fork attack, we introduce a second protocol for D
- D periodically signs a *cryptographic beacon* v.
 - A cryptographic beacon is an *unpredictable* but *verifiable* value.
- Sign(sk, (v,H)) assures users that:
 D had RTH H at "time" v


Verifiably unpredictable values

- We want to generate an unpredictable value which can be verified to have been generated after a given timepoint.
- One simple idea: everyone contributes a random value, and we hash all the values.

Verifiably unpredictable values

- We want to generate an unpredictable value which can be verified to have been generated after a given timepoint.
- One simple idea: everyone contributes a random value, and we hash all the values.
- Another idea: *cryptographic beacons* e.g., based on stock market indices

Proposal: a device D with two protocols

D stores: H, dk, sk

- Input: R, H', π, ρ
- Compute:
 - Verify π : R in H'
 - Verify ρ : H' extends H
 - result := dec(dk, R)
 - H := H'
- Output: result

- Input: v
- Compute
 - Result := Sign(sk, (v,H))
- Output result

Conclusion

- The decrypting agent has no way to decrypt data without leaving evidence in the log, unless it can break the hardware device D.
- Who manufactures D?
 - How can the relying parties (both users U1 . . . and decrypting agents Y) be assured that it will behave as specified?
- One idea is that it is jointly manufactured by an international coalition of companies with a reputation they wish to maintain.