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Going out tonight?

● Teenager wants 
privacy

● Parent wants security



  

Investigatory Powers Act 2016

● Gives Gov wide-
ranging snooping and 
interference powers

● Oversight is 
unverifiable

● Making decryption 
accountable is 
potentially a step 
towards verifiable 
oversight



  

Corporate email

● Corporation may 
need to access 
employee email

● But employees may 
expect some 
transparency



  

Mobile phone and IoT sensor data

● “Find my iphone” requires you to continuously 
send your location to Apple
– You’d get to know when they decrypt it

● More generally, decryption accountability 
potentially enables detection of policy 
violations in IoT sensor data.



  

Electronic voting

● Voter’s client software encrypts her vote, 
using a public key pk, and sends it to server.

● … mix nets … homomorphic combination … 
verification of zkps … 

● The result is decrypted, using the secret key 
sk corresponding to pk.
– We’d like to know that individual voters’ votes are 

not decrypted.



  

Requirements

● Users create ciphertexts using a public key pk.
● Decrypting agent Y is capable of decrypting the 

ciphertexts without any help from the users.
● When Y decrypts ciphertexts, it unavoidably 

creates evidence e that is accessible to users. 
The evidence cannot be suppressed or 
discarded without detection.

● By examining e, users gain some information 
about the quantity and nature of the decryptions 
being performed. 



  

This requires hardware

● If Y has a ciphertext and a decryption key, it is impossible 
to detect whether she applies the key to to ciphertext or 
not.
– The decryption key has to be guarded by a hardware device D 

that controls its use.

● What is a minimal specification for D that will give us 
the desired properties?

● Idea of this paper: propose a simple generic design that 
achieves the desired functionality. 



  

Core idea

● There is a log L in which all decryption requests are 
recorded.
– D will perform a decryption only if the request is accompanied 

by a proof that it has been entered into L.

● Someone maintains L, but we minimise the requirement 
to trust that maintainer.
– The maintainer of L is not required to be trusted w.r.t. integrity 

of L. If the maintainer cheats, e.g. by deleting/modifying 
entries from L, or by forking L, users can detect that.

– The maintainer is required to be trusted for confidentiality, so 
we design L so that confidentiality isn't required.



  

The log L

● The log L is organised as an append-only 
Merkle tree
– as used in, for example, certificate transparency

● The maintainer periodically publishes the root 
tree hash (RTH) H of L
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The log L

● The log L is organised as an append-only Merkle tree
– as used in, for example, certificate transparency

● The maintainer periodically publishes the root tree 
hash (RTH) H of L

● The maintainer is capable of generating two kinds of 
proof about the log's behaviour:
– A proof π that some data item d is in the tree with RTH H 

– A proof ρ that the tree with RTH H' is an append-only 
extension of the tree with RTH H

● All the ops, incl gen and verif of proofs, are O(log n)



  

Hardware device D
sk, dk, H

Decrypting agent Y

R

Enter R into L
Obtain H'

Obtain π: R in H'
Obtain ρ: H' extends H

R, H', π, ρ

Verify π: R in H'
Verify ρ: H' extends H

result := dec(dk, R)
H := H'

result

result

H



  

Evidence of decryption in L

● Evidence about decryptions is obtained by 
inspecting L, which contains the decryption 
requests. 
– Example 1: L contains a hash of the ciphertext that is 

decrypted. This allows a user U to detect if ciphertexts 
she produced have been decrypted.

– Example 2: L contains a unique value representing the 
decrypted ciphertext, but the value cannot be tied to a 
particular ciphertext (for example, the value could be 
the hash of a re-encryption). This allows users to see 
the number of ciphertexts decrypted, but not which 
particular ones.



  

Insecure!

● The log provider could maintain two versions of the log:
– The one it shows to users: it has no decryption requests in it, so 

users are happy

– The one it shows to D: it has lots of decryption requests in it, so D 
decrypts a lot of data

● The users and D each verify that the version they see is 
maintained append-only. But they can't detect that they are 
different versions.

● The usual way of addressing this attack is “gossip protocols”.
– Doesn't work here.



  

D
sk, dk, H

v

result := Sign(sk, (v,H) )

result

● To defeat the fork attack, 
we introduce a second 
protocol for D

● D periodically signs a 
cryptographic beacon v.
– A cryptographic beacon is 

an unpredictable but 
verifiable value.

● Sign(sk, (v,H) ) assures 
users that: 
D had RTH H at “time” v



  

Verifiably unpredictable values

● We want to generate an unpredictable value 
which can be verified to have been generated 
after a given timepoint. 

● One simple idea: everyone
contributes a random value, 
and we hash all the values.
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Verifiably unpredictable values

● We want to generate an unpredictable value 
which can be verified to have been generated 
after a given timepoint. 

● One simple idea: everyone
contributes a random value, 
and we hash all the values.

● Another idea:
cryptographic beacons
e.g., based on stock market
indices
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Proposal: a device D with two protocols

● Input: R, H', π, ρ
● Compute:

– Verify π: R in H'

– Verify ρ: H' extends H

– result := dec(dk, R)

– H := H'

● Output: result

● Input: v
● Compute

– Result := 
       Sign(sk, (v,H) )

● Output result

D stores:  H, dk, sk



  

Conclusion

● The decrypting agent has no way to decrypt data 
without leaving evidence in the log, unless it can break 
the hardware device D.

● Who manufactures D?
– How can the relying parties (both users U1 . . . and decrypting 

agents Y ) be assured that it will behave as specified?

● One idea is that it is jointly manufactured by an 
international coalition of companies with a reputation 
they wish to maintain.
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