

Making decryption accountable

Mark Ryan

HP Inc Labs, Bristol
Univ. of Birmingham

Secure Implementation of Cryptographic Software
Lesbos, Greece

August 2017

Twenty-fifth International Workshop on
Security Protocols (SPW’17)

21 March 2017

HotSpot at ETAPS
23 April 2017

Going out tonight?

● Teenager wants
privacy

● Parent wants security

Investigatory Powers Act 2016

● Gives Gov wide-
ranging snooping and
interference powers

● Oversight is
unverifiable

● Making decryption
accountable is
potentially a step
towards verifiable
oversight

Corporate email

● Corporation may
need to access
employee email

● But employees may
expect some
transparency

Mobile phone and IoT sensor data

● “Find my iphone” requires you to continuously
send your location to Apple
– You’d get to know when they decrypt it

● More generally, decryption accountability
potentially enables detection of policy
violations in IoT sensor data.

Electronic voting

● Voter’s client software encrypts her vote,
using a public key pk, and sends it to server.

● … mix nets … homomorphic combination …
verification of zkps …

● The result is decrypted, using the secret key
sk corresponding to pk.
– We’d like to know that individual voters’ votes are

not decrypted.

Requirements

● Users create ciphertexts using a public key pk.
● Decrypting agent Y is capable of decrypting the

ciphertexts without any help from the users.
● When Y decrypts ciphertexts, it unavoidably

creates evidence e that is accessible to users.
The evidence cannot be suppressed or
discarded without detection.

● By examining e, users gain some information
about the quantity and nature of the decryptions
being performed.

This requires hardware

● If Y has a ciphertext and a decryption key, it is impossible
to detect whether she applies the key to to ciphertext or
not.
– The decryption key has to be guarded by a hardware device D

that controls its use.

● What is a minimal specification for D that will give us
the desired properties?

● Idea of this paper: propose a simple generic design that
achieves the desired functionality.

Core idea

● There is a log L in which all decryption requests are
recorded.
– D will perform a decryption only if the request is accompanied

by a proof that it has been entered into L.

● Someone maintains L, but we minimise the requirement
to trust that maintainer.
– The maintainer of L is not required to be trusted w.r.t. integrity

of L. If the maintainer cheats, e.g. by deleting/modifying
entries from L, or by forking L, users can detect that.

– The maintainer is required to be trusted for confidentiality, so
we design L so that confidentiality isn't required.

The log L

● The log L is organised as an append-only
Merkle tree
– as used in, for example, certificate transparency

● The maintainer periodically publishes the root
tree hash (RTH) H of L

1 2 3

h(1,2)

RTH = h(h(1,2),3)

1 2 3 4

h(1,2) h(3,4)

RTH = h(h(1,2),h(3,4))

1 2 3 4 5

h(1,2) h(3,4)

h(h(1,2),h(3,4))

RTH = h(h(h(1,2),h(3,4)), 5)

1 2 3 4 5 6

h(1,2) h(3,4) h(5,6)

h(h(1,2),h(3,4))

RTH=h(h(h(1,2),h(3,4)),h(5,6))

1 2 3 4 5 6 7 8

h(1,2) h(3,4) h(5,6) h(7,8)

h(h(1,2),h(3,4)) h(h(5,6),h(7,8))

RTH=h(h(h(1,2),h(3,4)),h(h(5,6),h(7,8)))

1 2 3 4 5 6 7 8 9

h(1,2) h(3,4) h(5,6) h(7,8)

h(h(1,2),h(3,4)) h(h(5,6),h(7,8))

h(h(h(1,2),h(3,4)),h(h(5,6),h(7,8)))

RTH=h(h(h(h(1,2),h(3,4)),h(h(5,6),h(7,8))),9)

The log L

● The log L is organised as an append-only Merkle tree
– as used in, for example, certificate transparency

● The maintainer periodically publishes the root tree
hash (RTH) H of L

● The maintainer is capable of generating two kinds of
proof about the log's behaviour:
– A proof π that some data item d is in the tree with RTH H

– A proof ρ that the tree with RTH H' is an append-only
extension of the tree with RTH H

● All the ops, incl gen and verif of proofs, are O(log n)

Hardware device D
sk, dk, H

Decrypting agent Y

R

Enter R into L
Obtain H'

Obtain π: R in H'
Obtain ρ: H' extends H

R, H', π, ρ

Verify π: R in H'
Verify ρ: H' extends H

result := dec(dk, R)
H := H'

result

result

H

Evidence of decryption in L

● Evidence about decryptions is obtained by
inspecting L, which contains the decryption
requests.
– Example 1: L contains a hash of the ciphertext that is

decrypted. This allows a user U to detect if ciphertexts
she produced have been decrypted.

– Example 2: L contains a unique value representing the
decrypted ciphertext, but the value cannot be tied to a
particular ciphertext (for example, the value could be
the hash of a re-encryption). This allows users to see
the number of ciphertexts decrypted, but not which
particular ones.

Insecure!

● The log provider could maintain two versions of the log:
– The one it shows to users: it has no decryption requests in it, so

users are happy

– The one it shows to D: it has lots of decryption requests in it, so D
decrypts a lot of data

● The users and D each verify that the version they see is
maintained append-only. But they can't detect that they are
different versions.

● The usual way of addressing this attack is “gossip protocols”.
– Doesn't work here.

D
sk, dk, H

v

result := Sign(sk, (v,H))

result

● To defeat the fork attack,
we introduce a second
protocol for D

● D periodically signs a
cryptographic beacon v.
– A cryptographic beacon is

an unpredictable but
verifiable value.

● Sign(sk, (v,H)) assures
users that:
D had RTH H at “time” v

Verifiably unpredictable values

● We want to generate an unpredictable value
which can be verified to have been generated
after a given timepoint.

● One simple idea: everyone
contributes a random value,
and we hash all the values.

1 2 3 4 5 6 7 8

h(1,2) H(3,4) H(5,6) H(7,8)

h(h(1,2),h(3,4)) h(h(5,6),h(7,8))

RTH=h(h(h(1,2),h(3,4)),h(h(5,6),h(7,8)))

Verifiably unpredictable values

● We want to generate an unpredictable value
which can be verified to have been generated
after a given timepoint.

● One simple idea: everyone
contributes a random value,
and we hash all the values.

● Another idea:
cryptographic beacons
e.g., based on stock market
indices

1 2 3 4 5 6 7 8

h(1,2) H(3,4) H(5,6) H(7,8)

h(h(1,2),h(3,4)) h(h(5,6),h(7,8))

RTH=h(h(h(1,2),h(3,4)),h(h(5,6),h(7,8)))

Proposal: a device D with two protocols

● Input: R, H', π, ρ
● Compute:

– Verify π: R in H'

– Verify ρ: H' extends H

– result := dec(dk, R)

– H := H'

● Output: result

● Input: v
● Compute

– Result :=
 Sign(sk, (v,H))

● Output result

D stores: H, dk, sk

Conclusion

● The decrypting agent has no way to decrypt data
without leaving evidence in the log, unless it can break
the hardware device D.

● Who manufactures D?
– How can the relying parties (both users U1 . . . and decrypting

agents Y) be assured that it will behave as specified?

● One idea is that it is jointly manufactured by an
international coalition of companies with a reputation
they wish to maintain.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

