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Introduction

» Information-flow security
» Controlling how information is propagated by a system

» Preventing dissemination of confidential information
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Introduction

Information-flow security

Controlling how information is propagated by a system
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>
» Preventing dissemination of confidential information
» Access control

>

Making sure that the program handles information securely
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Information-flow security

» A language-based technique
» Tracking flow of information during a program execution
» Preventing leakage of confidential information

> An attacker is able to observe public outputs of a program

v

Public outputs must be independent of secret inputs
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Information-flow security

» A language-based technique
» Tracking flow of information during a program execution
» Preventing leakage of confidential information

> An attacker is able to observe public outputs of a program

v

Public outputs must be independent of secret inputs

v

Noninterference semantics [1]:

> In two executions, a program is run with different secret inputs
but the same public values, the public outputs will be the
same.

» An attacker cannot see any difference between these executions
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Information-flow security

» Two kinds of flow of information
» Explicit flow: /:= h
» Implicit flow:
| :=true; if h then /:= false; else skip;
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Information-flow security

Note: Techniques for enforcing information-flow security [2]
» Static secure type-systems:
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Information-flow security

Note: Techniques for enforcing information-flow security [2]
» Static secure type-systems:

» The types of program variables and expressions are augmented
with security levels
» Typing rules:
> - exp: high
» ¢ exp
F exp : low
exp : low
[low] F I := exp
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Information-flow security

Note: Techniques for enforcing information-flow security [2]
» Static secure type-systems:

» The types of program variables and expressions are augmented
with security levels
» Typing rules:
> - exp: high
» ¢ exp
F exp : low
exp : low
[low] F I := exp
» Compiler

» Dynamic analysis: security checks are performed at run-time
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Static vs dynamic enforcement

> Static techniques:
» Less runtime overhead
» Conservative

» Dynamic techniques:

» More runtime overhead
» The exact secrecy levels are available— more precise
» More permissive

if /<0 then /:=1; else [:=h;

ST DT
Run-time efficiency + —
Exact security and permissiveness - e
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Static vs dynamic enforcement

> Static techniques:

» Less runtime overhead
» Conservative

» Dynamic techniques:

» More runtime overhead
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Information-flow security &
Active object languages

» Distributed systems

» Active object languages
» Scala/Akka

> ABS/Creol

» Rebeca

>

>

Encore
ASP
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Information-flow security &
Active object languages

» Distributed systems
» Active object languages

» Scala/Akka
> ABS/Creol
> Rebeca

» Encore
> ASP

» Goal: To enforce information-flow security in a program

> Security aspects highly depend on communication paradigms
between autonomous nodes
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Active object languages

What are active object languages?
> A specific category of concurrent programming languages

> Active objects are created with their own threads, behaving
autonomously

» They communicate with each other through method calls

» Asynchronous call (one-way): o!m(e)
» Synchronous call (two-way): x:=o.m(e)
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Communication paradigms

» Future mechanism: A flexible way of sharing results

) UiO s University of Oslo



Communication paradigms

» Future mechanism: A flexible way of sharing results
» Futures: f =:0lm(e)
» A future is a placeholder created as a result of an
asynchronous and remote method call
» Eventually contains the result of the method call
» When the caller needs the future value it requests it
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First-class futures

f=o0lm(e)
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First-class futures

Future is resolved
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Wrappers

» Here we exploit the notion of wrapper to enforce
information-flow security

A wrapper is a kind of membrane defined around an object

A wrapper controls security levels of communicated messages

Preventing sending secret data to low level objects

vVvy Vvyy

Confidentiality of a future
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Run-time elements: objects

o

Code (statements)

Fields

Local variables
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Run-time elements: objects
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Run-time elements: futures
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Run-time elements: futures
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Run-time elements: futures
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Invocation message / Callee side
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Method call / Callee side
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Method call / Callee side
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Get operation
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Get operation
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Get operation
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Conclusion

» A wrapper enforce dynamic information-flow security

» Runt-time checking for all objects in a system — run-time
overhead

» By combination of static analysis with dynamic checking to
have less run-time overhead

> |f statically it is shown that an object is safe— it does not a
wrapper for run-time checking
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Thank You! :)
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