
Information-Flow Security

Farzane Karami

Supervisor: Olaf Owe

Department of Informatics, University of Oslo

GEMINI IoT PhD-Seminar 15 May 2019

1



Introduction

I Information-flow security
I Controlling how information is propagated by a system
I Preventing dissemination of confidential information

I Access control
I Making sure that the program handles information securely

2



Introduction

I Information-flow security
I Controlling how information is propagated by a system
I Preventing dissemination of confidential information
I Access control

I Making sure that the program handles information securely

2



Introduction

I Information-flow security
I Controlling how information is propagated by a system
I Preventing dissemination of confidential information
I Access control
I Making sure that the program handles information securely

2



Information-flow security

I A language-based technique
I Tracking flow of information during a program execution
I Preventing leakage of confidential information

I An attacker is able to observe public outputs of a program
I Public outputs must be independent of secret inputs

I Noninterference semantics [1]:
I In two executions, a program is run with different secret inputs

but the same public values, the public outputs will be the
same.

I An attacker cannot see any difference between these executions

3



Information-flow security

I A language-based technique
I Tracking flow of information during a program execution
I Preventing leakage of confidential information

I An attacker is able to observe public outputs of a program
I Public outputs must be independent of secret inputs
I Noninterference semantics [1]:

I In two executions, a program is run with different secret inputs
but the same public values, the public outputs will be the
same.

I An attacker cannot see any difference between these executions

3



Information-flow security

I Two kinds of flow of information
I Explicit flow: l := h
I Implicit flow:

l := true; if h then l := false; else skip;

4



Information-flow security

Note: Techniques for enforcing information-flow security [2]
I Static secure type-systems:

I The types of program variables and expressions are augmented
with security levels

I Typing rules:
I ` exp : high

I h /∈ exp

` exp : low

I exp : low

[low ] ` l := exp
I Compiler

I Dynamic analysis: security checks are performed at run-time

5



Information-flow security

Note: Techniques for enforcing information-flow security [2]
I Static secure type-systems:

I The types of program variables and expressions are augmented
with security levels

I Typing rules:
I ` exp : high

I h /∈ exp

` exp : low

I exp : low

[low ] ` l := exp

I Compiler

I Dynamic analysis: security checks are performed at run-time

5



Information-flow security

Note: Techniques for enforcing information-flow security [2]
I Static secure type-systems:

I The types of program variables and expressions are augmented
with security levels

I Typing rules:
I ` exp : high

I h /∈ exp

` exp : low

I exp : low

[low ] ` l := exp
I Compiler

I Dynamic analysis: security checks are performed at run-time

5



Information-flow security

Note: Techniques for enforcing information-flow security [2]
I Static secure type-systems:

I The types of program variables and expressions are augmented
with security levels

I Typing rules:
I ` exp : high

I h /∈ exp

` exp : low

I exp : low

[low ] ` l := exp
I Compiler

I Dynamic analysis: security checks are performed at run-time

5



Static vs dynamic enforcement

I Static techniques:
I Less runtime overhead
I Conservative

I Dynamic techniques:
I More runtime overhead
I The exact secrecy levels are available−→ more precise
I More permissive

if l < 0 then l := 1; else l := h;

6



Static vs dynamic enforcement

I Static techniques:
I Less runtime overhead
I Conservative

I Dynamic techniques:
I More runtime overhead
I The exact secrecy levels are available−→ more precise
I More permissive

if l < 0 then l := 1; else l := h;

6



Information-flow security &
Active object languages

I Distributed systems
I Active object languages

I Scala/Akka
I ABS/Creol
I Rebeca
I Encore
I ASP

I Goal: To enforce information-flow security in a program
I Security aspects highly depend on communication paradigms

between autonomous nodes

7



Information-flow security &
Active object languages

I Distributed systems
I Active object languages

I Scala/Akka
I ABS/Creol
I Rebeca
I Encore
I ASP

I Goal: To enforce information-flow security in a program
I Security aspects highly depend on communication paradigms

between autonomous nodes

7



Active object languages

What are active object languages?
I A specific category of concurrent programming languages
I Active objects are created with their own threads, behaving

autonomously
I They communicate with each other through method calls

I Asynchronous call (one-way): o!m(e)
I Synchronous call (two-way): x:=o.m(e)

8



Communication paradigms

I Future mechanism: A flexible way of sharing results

I Futures: f =:o!m(e)
I A future is a placeholder created as a result of an

asynchronous and remote method call
I Eventually contains the result of the method call
I When the caller needs the future value it requests it

9



Communication paradigms

I Future mechanism: A flexible way of sharing results
I Futures: f =:o!m(e)
I A future is a placeholder created as a result of an

asynchronous and remote method call
I Eventually contains the result of the method call
I When the caller needs the future value it requests it

9



First-class futures

10



First-class futures

10



Wrappers

I Here we exploit the notion of wrapper to enforce
information-flow security

I A wrapper is a kind of membrane defined around an object
I A wrapper controls security levels of communicated messages

I Preventing sending secret data to low level objects
I Confidentiality of a future

11



Run-time elements: objects

12



Run-time elements: objects

12



Run-time elements: futures

13



Run-time elements: futures

13



Run-time elements: futures

13



Invocation message / Callee side

14



Method call / Callee side

15



Method call / Callee side

16



Get operation

17



Get operation

18



Get operation

19



Conclusion

I A wrapper enforce dynamic information-flow security
I Runt-time checking for all objects in a system −→ run-time

overhead
I By combination of static analysis with dynamic checking to

have less run-time overhead
I If statically it is shown that an object is safe−→ it does not a

wrapper for run-time checking

20



References

[1] Joseph A Goguen and José Meseguer.
Security policies and security models.
In Security and Privacy, 1982 IEEE Symposium on, pages
11–11. IEEE, 1982.

[2] Andrei Sabelfeld and Andrew C Myers.
Language-based information-flow security.
IEEE Journal on selected areas in communications, 21(1):5–19,
2003.

21



Thank You! :)

22


