Information-Flow Security

Farzane Karami

Supervisor: Olaf Owe

Department of Informatics, University of Oslo

GEMINI loT PhD-Seminar 15 May 2019

)} UiO ¢ University of Oslo

Introduction

» Information-flow security
» Controlling how information is propagated by a system

» Preventing dissemination of confidential information

)} UiO ¢ University of Oslo

Introduction

» Information-flow security
» Controlling how information is propagated by a system
» Preventing dissemination of confidential information

» Access control

UiO ¢ University of Oslo

Introduction

Information-flow security

Controlling how information is propagated by a system

| 2
>
» Preventing dissemination of confidential information
» Access control

>

Making sure that the program handles information securely

UiO ¢ University of Oslo

Information-flow security

» A language-based technique
» Tracking flow of information during a program execution
» Preventing leakage of confidential information

> An attacker is able to observe public outputs of a program

v

Public outputs must be independent of secret inputs

)} UiO ¢ University of Oslo

Information-flow security

» A language-based technique
» Tracking flow of information during a program execution
» Preventing leakage of confidential information

> An attacker is able to observe public outputs of a program

v

Public outputs must be independent of secret inputs

v

Noninterference semantics [1]:

> In two executions, a program is run with different secret inputs
but the same public values, the public outputs will be the
same.

» An attacker cannot see any difference between these executions

UiO ¢ University of Oslo

Information-flow security

» Two kinds of flow of information
» Explicit flow: /:= h
» Implicit flow:
| :=true; if h then /:= false; else skip;

)} UiO ¢ University of Oslo

Information-flow security

Note: Techniques for enforcing information-flow security [2]
» Static secure type-systems:

)\ UiO ¢ University of Oslo

Information-flow security

Note: Techniques for enforcing information-flow security [2]
» Static secure type-systems:

» The types of program variables and expressions are augmented
with security levels
» Typing rules:
> - exp: high
» ¢ exp
F exp : low
exp : low
[low] F I := exp

UiO ¢ University of Oslo

Information-flow security

Note: Techniques for enforcing information-flow security [2]
» Static secure type-systems:

» The types of program variables and expressions are augmented
with security levels
» Typing rules:
> - exp: high
» ¢ exp
F exp : low
exp : low
[low] F I := exp
» Compiler

UiO ¢ University of Oslo

Information-flow security

Note: Techniques for enforcing information-flow security [2]
» Static secure type-systems:

» The types of program variables and expressions are augmented
with security levels
» Typing rules:
> - exp: high
» ¢ exp
F exp : low
exp : low
[low] F I := exp
» Compiler

» Dynamic analysis: security checks are performed at run-time

UiO ¢ University of Oslo

Static vs dynamic enforcement

> Static techniques:
» Less runtime overhead
» Conservative

» Dynamic techniques:

» More runtime overhead
» The exact secrecy levels are available— more precise
» More permissive

if /<0 then /:=1; else [:=h;

ST DT
Run-time efficiency + —
Exact security and permissiveness - e

UiO ¢ University of Oslo

Static vs dynamic enforcement

> Static techniques:

» Less runtime overhead
» Conservative

» Dynamic techniques:

» More runtime overhead
» The exact secrecy levels are available— more precise
» More permissive

if /<0 then /:=1; else [:=h;

ST DT
Run-time efficienc ol "~ -l
y < L=
Exact s'eC}lrily and -_ "~ . .i'.\‘
permissiveness T

UiO ¢ University of Oslo

Information-flow security &
Active object languages

» Distributed systems

» Active object languages
» Scala/Akka

> ABS/Creol

» Rebeca

>

>

Encore
ASP

UiO ¢ University of Oslo

Information-flow security &
Active object languages

» Distributed systems
» Active object languages

» Scala/Akka
> ABS/Creol
> Rebeca

» Encore
> ASP

» Goal: To enforce information-flow security in a program

> Security aspects highly depend on communication paradigms
between autonomous nodes

)} UiO ¢ University of Oslo

Active object languages

What are active object languages?
> A specific category of concurrent programming languages

> Active objects are created with their own threads, behaving
autonomously

» They communicate with each other through method calls

» Asynchronous call (one-way): o!m(e)
» Synchronous call (two-way): x:=o.m(e)

)} UiO ¢ University of Oslo

Communication paradigms

» Future mechanism: A flexible way of sharing results

) UiO s University of Oslo

Communication paradigms

» Future mechanism: A flexible way of sharing results
» Futures: f =:0lm(e)
» A future is a placeholder created as a result of an
asynchronous and remote method call
» Eventually contains the result of the method call
» When the caller needs the future value it requests it

UiO ¢ University of Oslo

First-class futures

f=o0lm(e)

UiO ¢ University of Oslo

10

First-class futures

Future is resolved

UiO ¢ University of Oslo

10

Wrappers

» Here we exploit the notion of wrapper to enforce
information-flow security

A wrapper is a kind of membrane defined around an object

A wrapper controls security levels of communicated messages

Preventing sending secret data to low level objects

vVvy Vvyy

Confidentiality of a future

UiO ¢ University of Oslo

11

Run-time elements: objects

o

Code (statements)

Fields

Local variables

UiO ¢ University of Oslo

12

Run-time elements: objects

UiO ¢ University of Oslo

12

DA

Run-time elements: futures

) UiO ¢ University of Oslo

13

Run-time elements: futures

) UiO ¢ University of Oslo

13

Run-time elements: futures

u
u
-——
e N
/7 u \
/ \
! \
| |
\ 1
\ ’
\ ,
N 4
~ -

13

Invocation message / Callee side

~ e TTTTes ~
e RN N ’ 7 N N
/, N 4 o N
;0 \ ’ N

/ \ ’
B \ / Code

f Code \ 1

| —] Fields

\ Fields] ! Local variables

\ Local variables ’ !

\ / \
\ /7 \ ’
A ’) 7

S . \ invoc u,m,d),to 0|,
~e o _-7 \\ 7
-— ’
N .
- -
y ~
invoc (u,m, d), to O

G} UiO ¢ University of Oslo

Method call / Callee side

o 0
————————————————

II, PN
Vou /u \
\‘O / \
1 1
\ 1

\ 4

__’/

UiO ¢ University of Oslo
15
=] = = = = DA

Method call / Callee side

0

le]=V
LA
u : ,"_

UiO ¢ University of Oslo

o

=
&

Get operation

UiO ¢ University of Oslo

DA

Get operation

_——

prp— m

© (i

UiO ¢ University of Oslo

18
=}

DA

Get operation

f-u
_
if H % lev(0)
T~
e N
/u N
; \
|
\
U
N ,
~

UiO ¢ University of Oslo

19

DA

Conclusion

» A wrapper enforce dynamic information-flow security

» Runt-time checking for all objects in a system — run-time
overhead

» By combination of static analysis with dynamic checking to
have less run-time overhead

> |f statically it is shown that an object is safe— it does not a
wrapper for run-time checking

UiO ¢ University of Oslo

20

References

[1] Joseph A Goguen and José Meseguer.
Security policies and security models.
In Security and Privacy, 1982 IEEE Symposium on, pages
11-11. IEEE, 1982

[2] Andrei Sabelfeld and Andrew C Myers.
Language-based information-flow security.

IEEE Journal on selected areas in communications, 21(1):5-19,
2003.

UiO ¢ University of Oslo

21

Thank You! :)

@) UiO s University of Oslo

22

