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Filter Generator - An LFSR based stream cipher
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- Linear Feedback Shift Register (LFSR) of length n, defined by its
degree-n feedback polynomial g € F,[x].

* S;:=(Si,...,Siyn_1) is the LFSR’s state at time i.

« Filtering function f : F} — TF,.

* Inputs to f: values in cells with indices \,, ..., \.
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Correlation and Fast Correlation Attacks

CORRELATION ATTACK (CA):

+ Published by Siegenthaler in 198s5.
+ Aimed at attacking combination generators (s LFSRs of length
n,~7i:17...,s.)

FAST CORRELATION ATTACK (FCA):

+ Published by Meier and Staffelbach in 1989.

+ The feedback polynomial g must have a low number of
non-zero coefficients (< 10.)

+ Use of low-density parity check equations.
« Use of a priori and a posteriori correlation probabilities for z;.
« Complexity: O(2") for some positive ¢ < 1.

2/15



Attacks against the filter generator

» FCA-based:

- State the problem as a decoding problem.

+ Improvements on finding parity checks (low-density multiples of
g) and evaluating them.

« Partial brute force.

- Vectorial versions.

. etc.

« Inversion attack / Filtering function oriented.
- Algebraic attacks
+ ... and others.
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Fast Correlation Attack

Letz=z,,...,zy be the given key stream of length N.

A parity check equation (PCE) comes from congruences
14+ X" + -+ 4 X4 = 0 mod g.

foro<i; <---<ig_, < N.Itonly dependsongandN. Ifdisa
small integer, we call it a low-density parity check equation (LDPCE).

For any j, we have that

Sj + Sjtiy + -+ Sjtig_, = O
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Fast Correlation Attack

Let p := Pr(u(S) = f(S)) be relatively high, for a linear function u.
Let vg := u(Sg) @ zx. Then Pr(v, = 0) = p and a PCE implies

Vi T Viti, T Vg, = gt iy ot 2y (1)

Find many PCE and compute p, := Pr (v, = 0 | relations (1)).

Choose a set As.t. for k € A, p, ~ 1. Get the initial state by solving

u(Sg) =z, @ v, R € A.

The method works for small d and moderate N. For larger d the
complexity becomes exponential.
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Some additional notation...

+ Let M be the companion matrix of g, then
Si=M'S,.
+ Let A denote the ¢ x n matrix that “selects” the inputs to f:
(SitarsSitrgs - - -1 Sitr,) = ASi.

« Define A; := AM', an ¢ x n matrix of rank £.

- Let X = S,, then
z; = f(AX).
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Statement of the problem

Given N bits of the key stream, determine the vector a for which the
conditional probability

Pr(X=al|f(AX)=2z,i=1,...,N).

is maximal.

STRAIGHTFORWARD METHOD:

Equivalent to solving the system of equations
f(AX) =2z,i=1,...,N .. but may be computationally infeasible.

7115



Our approach

« Compute the conditional distributions

f(ALX) = z;
Pr(BX=0b :
f(AiX) =z,
for a variety of matrices B of different ranks and indices
{i1,...,ig}, where d is small.

+ Each B above define a level. At each level we combine the
computed distributions with a maximum likelihood (ML)
method to get the initial state X.
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Generalised LDPCE

A Generalised LDPCE comes from
ho 4+ X"hy + - -+ + X'4="hg_, = 0 mod g,

where the polynomials h; are in the space generated by x™, ... x:.

Why Generalised LDPCE?

- Average key stream length to find LDPCE: N > d 27,

. Average key stream length to find Generalised LDPCE:
N>d27r.
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Generalised LDPCE are a particular case of the relations
C A, +---+ A, € (B).
These relations are called short if d is small.
We use short relations to determine the distributions to compute

f(AiX) =z,
Pr|BX=5>b

f(AX) =z,
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Getting the initial state

Distinguish X = S, from random X:

+ 3 desired success probability.
« For each level B (r x n matrix), distinguish b = BX:

« set threshold cs.
« compare ML indicator of b with cg.
- if passed, extend b to the next level.

Expected number of survivors:

+ The average number of survivors at each level is a2", where «
depends on the ML indicator.

+ We use a multivariate normal approximation to compute a.
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Some (small) experimental results

Device:

© g =X+ X0+ x4+ X3 4+ X 4+ X% +x8 + X7 + X0 +5 + x4+ x2+1.
o [ = XaXoX3 + XqXoXy, + XeXoXs + XqXy, + XaX5 + X3 + Xy, + Xs.
* (Xsy..., A1) =(18,16,13,9,1).

It is a “hard” instance for the given parameters:

« high number of non-zero coefficients in g, and

° )\5—A1%n.
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Some (small) experimental results

LFSR length = 19, #taps poly. = 12, #taps func. = 5, #ks. bits = 1500
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Some (small) experimental results

LFSR length = 19, #taps poly. = 12, #taps func. = 5, #ks. bits = 1500
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Some (small) experimental results
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Questions?



