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Introduction

L.Budaghyan, C.Carlet, T.Helleseth, A.Kholosha, ”On o-equivalence of
Niho Bent functions”,WAIFI 2014, Lecture Notes in Comp. Sci. 9061,
pp. 155-168,2015.

Group of 24 transformations acting on o-polynomials;
Only 4 of them can lead to EA-inequivalent Niho bent functions .
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Notation and preliminaries

Trace function
A mapping Trk

r : F2k 7→ F2r , defined in the following way:

Trr
k(x) = Σ

k
r −1
i=0 x2ir

= x + x2r
+ x22r

+ . . .+ x2k−r
,

for any k, r ∈ Z+, such that k is dividing by r.
For r = 1, Trk

1 is called the absolute trace:

Trk
1(x) = Trk(x) = Σk−1

i=0 x2i
.
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Boolean function f : Fn
2 7→ F2.

Univariant representation
Identify Fn

2 with F2n . There exists the unique representation of f:

f(x) = Σ2n−1
i=0 aixi.

The degree of Boolean function is the maximum w2(i) of the
exponents in its univariant representation.
affine, if the degree ≤ 1.
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Bivariant representation(for even n)
Fn
2 can be identified with F2m × F2m(n = 2m) and the argument of f

is considered as an ordered pair (x, y), x, y ∈ F2m .Then there is the
unique representation of f over F2m :

f(z) = Σ0≤i,j≤2m−1ai,jxiyj.

The algebraic degree of f is maxi,j|ai,j ̸=0((w2(i) + w2(j)).
Bivariant representation of f in trace form:

f(x, y) = Trm(P(x, y)),

where P(x, y) is some polynomialof 2 variables over F2m .
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Bent functions

Walsh transformation
is a Fourier transformation of χf = (−1)f, whose value is defined by:

χ̂f (a) = Σx∈F2n (−1)f(x)+Trn(ax),

at point a ∈ F2n .
The Hamming distance
f, g : F2n 7→ F2, dH(f, g) = |{x ∈ F2n |f(x) ̸= g(x)}|.
Nonlinearity
NL(f) = minl∈AndH(f, l), where
An = {l : F2n 7→ F2|l = a · x + b, a ∈ F2n , b ∈ F2}.
High nonlinearity prevents the system from linear attacks and
differential attacks.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

NL(f) = 2n−1 − 1

2
max
a∈F2n

χ̂f(a).

NL(f) ≤ 2n−1 − 2
n
2−1.

The NL(f) reach the upper bound only for even n.
Bent function
f : F2n 7→ F2 (n is even), if

NL(f) = 2n−1 − 2
n
2−1,

equivalently
χ̂f (a) = ±2

n
2

for any a ∈ F2n .
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Niho Bent Functions

A positive integer d (understood modulo 2n − 1 with n = 2m ) is a
Niho exponent and t 7→ td, is a Niho power function, if the
restriction of td to F2m is linear, i.e. d ≡ 2j(mod 2m − 1) for some
j < n.

Example
Niho bent functions

1. Quadratic functions Trm(at2m+1), a ∈ F2m \ {0};
2. Binomilas of the form f(t) = Trn(α1td1

1 + α2td2
2 ), where

α1, α2 ∈ F2n , d1 = (2m − 1) 12 + 1, and d2 can be:
(2m − 1)3 + 1, (2m − 1) 14 + 1 (m is odd), (2m − 1) 16 + 1(m is even).

3. For r > 1 with gcd(r,m) = 1

f(x) = Trn
(

a2t2m+1 + (a + a2m
)
∑2r−1−1

i=1 tdi
)

,
where 2rdi = (2m − 1)i + 2r, a ∈ F2n s.t. a + a2m ̸= 0.
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Dillon’s class H of bent functions

J.F.Dillon, ”Elementary Hadamard difference sets”, Ph.D. dissertation,
Univ. Maryland, College Park. MD,USA,1974.

The functions in this class are defined in their bivariant form:

f(x, y) = Trm(y + xF(yx2m−2)),

where x, y ∈ F2m ,
F is a permutation of F2m s.t. F(x) + x doesn’t vanish
for any β ∈ F2m \ {0} the function F(x) + βx is 2-to-1.
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Class H of bent functions
C. Carlet, S.Messenger ”On Dillons class H of bent functions, Niho bent
functions and o-polynomials”, J.Combin.Theory Ser. A, vol. 118, no. 8,
pp.2392-2410, 2011.

This class H was modified into a class H of the functions:

g(x, y) =

Trm
(

xG
(y

x
))

, if x ̸= 0;

Trm(µy), if x = 0,

where µ ∈ F2m , G : F2m 7→ F2m satisfying the following conditions:
F : z 7→ G(z) + µz is a permutation over F2m (1)

z 7→ F(z) + βz is 2-to-1 on F2m for any β ∈ F2m \ {0}. (2)

Condition (2) implies condition (1) and it necessary and sufficient for g
being bent.2
Functions in H and the Dillon class are the same up to addition a linear
term Trm((µ+ 1)y).
Niho bent functions are functions in H in the univariant
representation.
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o-polynomials

A polynomial F : F2m 7→ F2m is called an o−polynomial, if
1 F is a permutational polynomial satisfies F(0) = 0,F(1) = 1;

2 the function Fs(x) =
{
0, if x = 0,
F(x+s)+F(s)

x if x ̸= 0

is a permutation for each s ∈ F2m .
If we do not require F(1) = 1, then F is called o−permutation.

Theorem
A polynomial F defined on F2m is an o−polynomial if and only if

z 7→ F(z) + βz is 2-to-1 on F2m for any β ∈ F2m \ {0}.

Every o-polynomial defines a Niho bent function and vice versa.
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The list of known o-polynomials on F2m :
1 F(z) = z2i , gcd(i,m) = 1,
2 F(z) = z6, m is odd,
3 F(z) = z3·2k+4, m = 2k − 1,
4 F(z) = z2k+22k , m = 4k − 1,
5 F(z) = z22k+1+23k+1

, m = 4k + 1,
6 F(z) = z2k

+ z2k+2 + z3·2k+4, m = 2k − 1,
7 F(z) = z 1

6 + z 1
2 + z 5

6 , m is odd.
8 F(z) = δ2(z4+z)+δ2(1+δ+δ2)(z3+z2)

z4+δ2z2+1 + z 1
2 , where Trm(

1
δ ) = 1 (if m ≡ 2

mod 4, then δ /∈ F4),
9 F(z) =

1
Trn

m
(v)

(
Trn

m(vr)(z+1)+(z+Trn
m(v)z

1
2 +1)1−rTrn

m(vz+ v2m
)r
)
+ z 1

2 ,
where m is even, r = ± 2m−1

3 , v ∈ F22m , v2m+1 ̸= 1, v ̸= 1
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Projective plane

Let P be a set, which elements are called points, L ⊂ 2P called lines and
I ⊆ P × L is a relation called relation of incidence.
Projective plane Π is a triple (P, L; I) satisfies the following conditions:

1 any pair of distinct points are incident with exactly one line;
2 any pair of distinct lines is incident exactly with one point;
3 there exists four points no three of which are incident with the same

line.
For any projective plane Π there exists an integer q ≥ 2 such that

Any point (line) of projective plane Π is incident exactly with q + 1
lines (points).
A projective plane Π has exactly q2 + q + 1 points (lines).

q is called the dimension of projective plane and Π is denoted by
PG(2, q).
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For any q = pn (p is a prime number) there exists a projective plane.
Points which are incident with the same line are called collinear.
A hyperoval of the projective plane PG(2, 2m) is a set of 2m + 2 points
no three of which are collinear.
There is a one-to-one correspondence between o−polynomials and
hyperovals.
Any hyperoval H can be represented in the form:

{(x, f(x), 1)|x ∈ F2m} ∪ {(1, 0, 0), (0, 1, 0)},

where f is an o−polynomial.
And conversly, for any o−polynomial f the set

{(x, f(x), 1)|x ∈ F2m} ∪ {(1, 0, 0), (0, 1, 0)}

defines a hyperoval.
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o-equivalence

hyperoval o-
polynomial

Niho bent
funtion

hyperovals are called equivalent if they are mapped to each other
by a collineation (Colliniation is an authomorphism of projective
plane which preserve incidentness. ).
o-polynomials are projectively equivalent, if they define equivalent
hyperovals.
Niho bent functions are o-equivalent if they define projectively
equivalent o-polynomials.
Boolean functions f and g are called EA-equivalent, if
there exist an affine authomorphism A and an affine Boolean
function l s.t. f = g ◦ A + l.
o-equivalent Niho bent fuctions defined by o-polynomials F and F−1

can be EA-inequivalent .2
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Modified magic action
C.M.O’Keefe, T. Penttila, Automorphisms groups of generalized
quadrangles via an unusual action of PΓL(2, 2h), Europ.J.Combinatorics
23, pp.213-232, 2002.

Consider an action of a group
PΓL(2, 2m) = {x 7→ Ax2j |A ∈ GL(2,F2m), 1 ≤ j ≤ m − 1} on the set of all
o-polynomials, which can be described by a collection of generators
G = {σ̃a, τ̃c, ρ2j , φ|a ∈ F2m \ {0}, c ∈ F2m , 0 ≤ j ≤ m − 1}:

σ̃aF(x) = 1

F(a)F(ax), a ∈ F2m \ {∅};

τ̃cF(x) =
1

F(1 + c) + F(c) (F(x + c) + F(c)), c ∈ F2m ,

φF(x) =xF(x−1);

ρ2jF(x) =(F(x2j
))2

−j
, 0 ≤ j ≤ m − 1.
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Proposition
Two o-polynomials arise from equivalent hyperovals if and only if they lie
on the same orbit under the modified magic action and the inverse map.

Two o-poynomials are projectively equivalent if and only if the
corresponding hyperovals lie on the same orbit under the modified
magic action and the inverse map.
Niho bent functions are o-equivalent iff the corresponding hyperovals
lie on the same orbit under the modified magic action and the
inverse map.
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Theorem
For a given o-polynomial F, EA-inequivalent Niho bent functions can
potentially arise from o-polynomials which lie on orbits of the modified
magic action and the inverse map of the following form

(H1(H2(H3(. . . (HqF)−1 . . .)−1)−1)−1, (1)

where Hi = φ ◦ τ̃ci1
◦ φ ◦ τ̃ci2

◦ . . .︸ ︷︷ ︸
ki

where i ∈ {1, . . . q} .



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

F is an o-monomial, then EA-inequivalent Niho bent functions can
potentially arise from o-polynomials on the following 4 orbits

F,F−1, (φF)−1, (φ ◦ τ̃1F)−1.

(φF)−1(x) = (xF( 1x ))−1,
F ◦
1 = (φ ◦ τ̃1F)−1 =

(
x(F(( 1x + 1) + 1)

)−1

.
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F(x) = x 1
6 + x 1

2 + x 5
6 , then EA-inequivalent Niho bent functions can

potentially arise from o-polynomials on the following orbits

F, (φ ◦ τ̃cF)−1, c ∈ Fm
2 .

F ◦
c (x) = (φ ◦ τ̃cF)−1(x) =

(
1

F(1+c)+F(c)x(F(
1
x + c) + F(c))

)−1

,
c ∈ Fm

2 .

Example
F(x) = x 1

6 + x 1
2 + x 5

6 , then o-polynomials F, F ◦
0 = F−1,F ◦

α ,F ◦
α3 ,F ◦

α5 ,
where α is a primitive element of F25 .


