E-Voting with Commitments

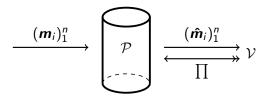
Thor Tunge

May 11, 2019

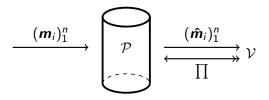
Thor Tunge E-Voting with Commitments

- Voting model
- Shuffling votes
- Proof of shuffling
- Add commitments

э



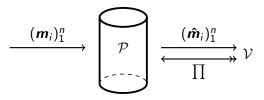
- Ordered set of messages as input
- (Permuted) ordered set as output
- Proof that $\hat{m}_i = m_{\pi(i)}$



- Ordered set of messages as input
- (Permuted) ordered set as output
- Proof that $\hat{m}_i = m_{\pi(i)}$

A cheating \mathcal{P} wants to change a message m_k such that no permutation exists

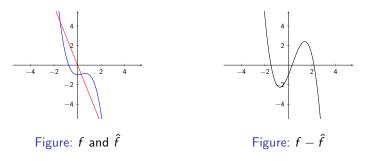
$$\pi:(m_i)_1^n\to (\hat{m}_i)_1^n$$



- Public: $(\hat{m}_i)_1^n$ and $(m_i)_1^n$
- Secret: Permutation π
- \bullet Will create an interactive protocol between ${\cal P}$ and ${\cal V}$

Intermezzo: Polynomials

- Pick two polynomials f, \hat{f} at random (of degree n)
- Pick a random number ρ
- How likely is $f(\rho) = \hat{f}(\rho)$



$$f(\rho) - \hat{f}(\rho) = 0 \Rightarrow f = \hat{f}$$

- Define $f(X) = \prod (m_i X)$, $\hat{f}(X) = \prod (\hat{m}_i X)$
- Construct linear system where solution exists if

$$f(\rho) - \hat{f}(\rho) = 0$$

 $\bullet\,$ Require that ${\cal P}$ provides a solution

★ Ξ →

- Define $f(X) = \prod (m_i X)$, $\hat{f}(X) = \prod (\hat{m}_i X)$
- Construct linear system where solution exists if

$$f(\rho) - \hat{f}(\rho) = 0$$

- Require that $\mathcal P$ provides a solution
- ${\mathcal P}$ proves that they know π to a verifier ${\mathcal V}$

Notation:
$$M_i = m_i - \rho$$
 and $\hat{M}_i = \hat{m}_i - \rho$

- $\textcircled{O} \ \mathcal{V} \ \text{picks a random } \rho$
- **2** Both compute M_i and \hat{M}_i
- **③** \mathcal{P} picks random $(\theta_i)_1^{n-1}$ and computes $\theta_{k-1}M_k + \theta_k \hat{M}_k$
- \mathcal{P} sends $\theta_{k-1}M_k + \theta_k \hat{M}_k$ to \mathcal{V}
- ${\small \textcircled{0}} \hspace{0.1 cm} \mathcal{V} \hspace{0.1 cm} \text{sends a challenge } \beta$
- **(**) \mathcal{P} has to determine s_i

- $\textcircled{O} \ \mathcal{V} \text{ picks a random } \rho$
- **2** Both compute M_i and \hat{M}_i
- **③** \mathcal{P} picks random $(\theta_i)_1^{n-1}$ and computes $\theta_{k-1}M_k + \theta_k \hat{M}_k$
- \mathcal{P} sends $\theta_{k-1}M_k + \theta_k \hat{M}_k$ to \mathcal{V}
- ${\small \textcircled{0}} \hspace{0.1 cm} \mathcal{V} \hspace{0.1 cm} \text{sends a challenge } \beta$
- **(**) \mathcal{P} has to determine s_i

$$\beta M_1 + s_1 \hat{M}_1 = \theta_1 \hat{M}_1$$

$$s_1 M_2 + s_2 \hat{M}_2 = \theta_1 M_2 + \theta_2 \hat{M}_2$$

$$s_{n-2}M_{n-1} + s_{n-1}\hat{M}_{n-1} = \theta_{n-2}M_{n-2} + \theta_{n-1}\hat{M}_{n-1}$$
$$(-1)^n\beta\hat{M}_n + s_{n-1}M_n = \theta_{n-1}M_n$$

- $\textcircled{O} \ \mathcal{V} \text{ picks a random } \rho$
- **2** Both compute M_i and \hat{M}_i
- **9** \mathcal{P} picks random $(\theta_i)_1^{n-1}$ and computes $\theta_{k-1}M_k + \theta_k \hat{M}_k$
- \mathcal{P} sends $\theta_{k-1}M_k + \theta_k \hat{M}_k$ to \mathcal{V}
- ${\small \textcircled{0}} \hspace{0.1 cm} \mathcal{V} \hspace{0.1 cm} \text{sends a challenge } \beta$
- **(**) \mathcal{P} has to determine s_i

$$s_{1}\hat{M}_{1} = \theta_{1}\hat{M}_{1}$$

$$s_{1}M_{2} + s_{2}\hat{M}_{2} = \theta_{1}M_{2} + \theta_{2}\hat{M}_{2}$$

$$\vdots$$

$$s_{n-2}M_{n-1} + s_{n-1}\hat{M}_{n-1} = \theta_{n-2}M_{n-2} + \theta_{n-1}\hat{M}_{n-1}$$

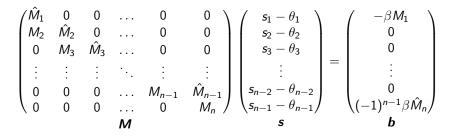
$$s_{n-1}M_{n} = \theta_{n-1}M_{n}$$

- $\textcircled{O} \ \mathcal{V} \text{ picks a random } \rho$
- **2** Both compute M_i and \hat{M}_i
- **③** \mathcal{P} picks random $(\theta_i)_1^{n-1}$ and computes $\theta_{k-1}M_k + \theta_k \hat{M}_k$
- \mathcal{P} sends $\theta_{k-1}M_k + \theta_k \hat{M}_k$ to \mathcal{V}
- ${\small \textcircled{0}} \hspace{0.1 cm} \mathcal{V} \hspace{0.1 cm} \text{sends a challenge } \beta$
- **(**) \mathcal{P} has to determine s_i

$$\beta M_1 + s_1 \hat{M}_1 = \theta_1 \hat{M}_1$$

$$s_1 M_2 + s_2 \hat{M}_2 = \theta_1 M_2 + \theta_2 \hat{M}_2$$

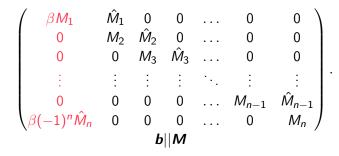
$$s_{n-2}M_{n-1} + s_{n-1}\hat{M}_{n-1} = \theta_{n-2}M_{n-2} + \theta_{n-1}\hat{M}_{n-1}$$
$$(-1)^n\beta\hat{M}_n + s_{n-1}M_n = \theta_{n-1}M_n$$



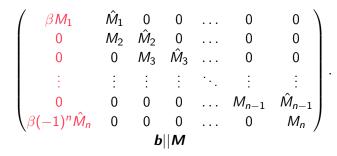
Ms = b

is a $n \times (n-1)$ system of linear equations. Over-determined.

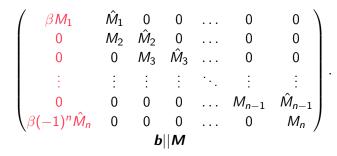
Want to show that **b** is in the span of **M** if shuffle is done correctly.



• Square $n \times n$ matrix

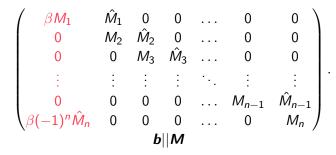


- Square $n \times n$ matrix
- M has linearly independent vectors



- Square $n \times n$ matrix
- **M** has linearly independent vectors

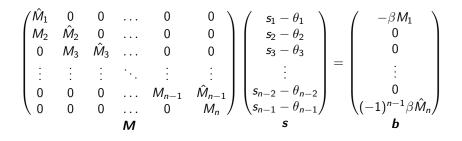
• det
$$(\boldsymbol{b}||\boldsymbol{M}) = \beta \left(\prod_{i=1}^{n} M_{i} - \prod_{i=1}^{n} \hat{M}_{i}\right) = \beta(f(\rho) - \hat{f}(\rho))$$



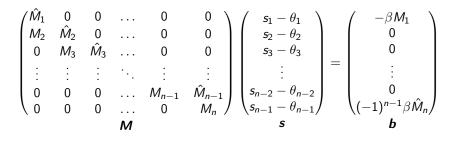
- Square $n \times n$ matrix
- M has linearly independent vectors

• det
$$(\boldsymbol{b}||\boldsymbol{M}) = \beta \left(\prod_{i=1}^{n} M_{i} - \prod_{i=1}^{n} \hat{M}_{i}\right) = \beta(f(\rho) - \hat{f}(\rho))$$

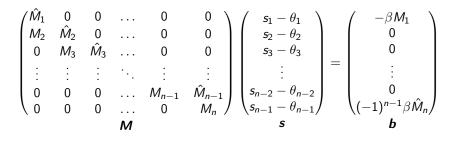
• $\det(\boldsymbol{b}||\boldsymbol{M}) = 0 \iff \boldsymbol{b}$ in the span of \boldsymbol{M}



• This system has a solution iff $f(\rho) = \hat{f}(\rho)$



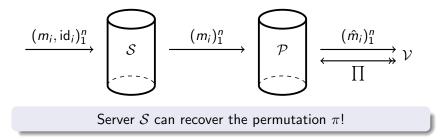
- This system has a solution iff $f(\rho) = \hat{f}(\rho)$
- Shuffle done honestly $\Rightarrow f(X) = \hat{f}(X) \Rightarrow f(\rho) = \hat{f}(\rho)$



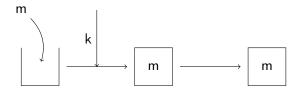
- This system has a solution iff $f(\rho) = \hat{f}(\rho)$
- Shuffle done honestly $\Rightarrow f(X) = \hat{f}(X) \Rightarrow f(\rho) = \hat{f}(\rho)$
- If permutation does not exist $\Rightarrow f(\rho) = \hat{f}(\rho)$ negligible

- ${\mathcal V}$ picks a random $\rho {\rightarrow}$
- Both compute $\hat{M}_i = \hat{m}_i
 ho$, \mathcal{P} computes $M_i = m_i
 ho$
- \mathcal{P} picks θ_i and computes $\theta_{k-1}M_k + \theta_k\hat{M}_k \rightarrow$
- $\mathcal V$ picks a challenge $\beta \rightarrow$
- ${\mathcal P}$ solves linear system ightarrow
- $\mathcal V$ verifies the linear system

Problem: The Whole Picture

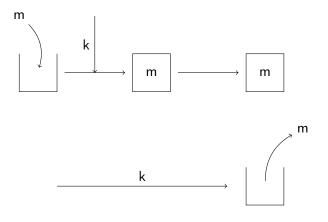


We want to commit to a value, and later reveal which value we commited to



э

We want to commit to a value, and later reveal which value we commited to



- 3 algorithms: Keygen, Commit, Verify
- Commit to a value *m* using randomness *r*:

$$Commit(m, r) := [m; r]$$

- Send commitment [*m*; *r*].
- Later, reveal (m, r) by sending it
- Verifier can check that [m; r] = Commit(m, r)

- 3 algorithms: Keygen, Commit, Verify
- Commit to a value *m* using randomness *r*:

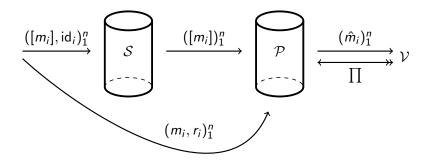
$$Commit(m, r) := [m; r]$$

- Send commitment [*m*; *r*].
- Later, reveal (m, r) by sending it
- Verifier can check that [m; r] = Commit(m, r)
- Hiding Verifier cannot open before (m, r) is sent.
- Binding Prover cannot send different (m', r') such that

$$\texttt{Commit}(m',r') = \texttt{Commit}(m,r) \quad m \neq m'$$

Solution: Commitments!

Add commitments to the picture!



Public: $([m])_1^n$ and $(\hat{m})_1^n$ Secret: permutation π $\checkmark \mathcal{V} \text{ picks a random } \rho \rightarrow$ $\checkmark \text{ Both compute } \hat{M}_i \text{ and } \hat{M}_i$ $\checkmark \mathcal{P} \text{ picks } \theta_i \text{ and computes } \theta_{k-1}M_k + \theta_k \hat{M}_k \rightarrow$ $\checkmark \mathcal{V} \text{ picks a challenge } \beta \rightarrow$ $\checkmark \mathcal{P} \text{ solves linear system by determining } s_i \rightarrow$ $\checkmark \mathcal{V} \text{ verifies the linear system}$

$\checkmark \mathcal{V} \text{ picks a random } \rho \rightarrow$ $\checkmark \text{ Both compute } \hat{M}_i \text{ and } \hat{M}_i$ $\checkmark \mathcal{P} \text{ picks } \theta_i \text{ and computes } \theta_{k-1}M_k + \theta_k \hat{M}_k \rightarrow$ $\checkmark \mathcal{V} \text{ picks a challenge } \beta \rightarrow$ $\checkmark \mathcal{P} \text{ solves linear system by determining } s_i \rightarrow$ $\checkmark \mathcal{V} \text{ verifies the linear system}$

 $\checkmark \mathcal{V} \text{ picks a random } \rho \rightarrow$ $\checkmark \text{ Both compute } \hat{M}_i \text{ and } \hat{M}_i$ $\thickapprox \mathcal{P} \text{ picks } \theta_i \text{ and computes } \theta_{k-1}M_k + \theta_k \hat{M}_k \rightarrow$ $\checkmark \mathcal{V} \text{ picks a challenge } \beta \rightarrow$ $\checkmark \mathcal{P} \text{ solves linear system by determining } s_i \rightarrow$ $\And \mathcal{V} \text{ verifies the linear system}$

✓ \mathcal{V} picks a random ρ → ✓ Both compute \hat{M}_i and \hat{M}_i × \mathcal{P} picks θ_i and computes $\theta_{k-1}M_k + \theta_k\hat{M}_k$ → ✓ \mathcal{V} picks a challenge β → ✓ \mathcal{P} solves linear system by determining s_i → × \mathcal{V} verifies the linear system

✓ \mathcal{V} picks a random $\rho \rightarrow$ ✓ Both compute \hat{M}_i and \hat{M}_i ✓ \mathcal{P} picks θ_i and computes $[\theta_{k-1}M_k + \theta_k \hat{M}_k] \rightarrow$ ✓ \mathcal{V} picks a challenge $\beta \rightarrow$ ✓ \mathcal{P} solves linear system by determining $s_i \rightarrow$ ✓ \mathcal{V} verifies the linear system

 $\checkmark \quad \mathcal{V} \text{ picks a random } \rho \rightarrow$ $\checkmark \quad \text{Both compute } \hat{M}_i \text{ and } \hat{M}_i$ $\checkmark \quad \mathcal{P} \text{ picks } \theta_i \text{ and computes } [\theta_{k-1}M_k + \theta_k \hat{M}_k] \rightarrow$ $\checkmark \quad \mathcal{V} \text{ picks a challenge } \beta \rightarrow$ $\checkmark \quad \mathcal{P} \text{ solves linear system by determining } s_i \rightarrow$ $\checkmark \quad \mathcal{V} \text{ verifies the linear system}$

 $\ensuremath{\mathcal{V}}$ is supposed to verfy that

$$\beta M_1 + s_1 \hat{M}_1 = \theta_1 \hat{M}_1$$

$$s_1 M_2 + s_2 \hat{M}_2 = \theta_1 M_2 + \theta_2 \hat{M}_2$$

$$s_{n-2}M_{n-1} + s_{n-1}\hat{M}_{n-1} = \theta_{n-2}M_{n-2} + \theta_{n-1}\hat{M}_{n-1}$$
$$(-1)^n\beta\hat{M}_n + s_{n-1}M_n = \theta_{n-1}M_n$$

÷

is satisfied.

æ

æ

But $\ensuremath{\mathcal{V}}$ can only see this mess

$$\beta[M_1] + s_1 \hat{M}_1 \neq [\theta_1 \hat{M}_1]$$

$$s_1[M_2] + s_2 \hat{M}_2 \neq [\theta_1 M_2 + \theta_2 \hat{M}_2]$$

÷

$$s_{n-2}[M_{n-1}] + s_{n-1}\hat{M}_{n-1} \neq [\theta_{n-2}M_{n-2} + \theta_{n-1}\hat{M}_{n-1}]$$

(-1)ⁿ $\beta\hat{M}_n + s_{n-1}[M_n] \neq [\theta_{n-1}M_n]$

æ

▶ ▲ 문 ▶ ▲ 문 ▶

$$s_1[M_2] + s_2 \hat{M}_2 \neq [\theta_1 M_2 + \theta_2 \hat{M}_2]$$

æ

$$s_1[M_2] + s_2[\hat{M}_2]
eq [heta_1 M_2 + heta_2 \hat{M}_2]$$

æ

$$s_1[M_2] + s_2[\hat{M}_2]
eq [heta_1M_2 + heta_2\hat{M}_2]$$

 $[\hat{M}_2] = \hat{M}_2$ trivial commitment (not hiding).

★ ∃ → ★ ∃

$$s_1[M_2] + s_2[\hat{M}_2] \neq [\theta_1 M_2 + \theta_2 \hat{M}_2]$$

 $[\hat{M}_2] = \hat{M}_2$ trivial commitment (not hiding). Use ZKPOK to show that the commitments

$$[M_2], [\hat{M}_2], [\theta_1 M_2 + \theta_2 \hat{M}_2]$$

are such that

$$s_1M_2 + s_2\hat{M}_2 = \theta_1M_2 + \theta_2\hat{M}_2$$

where s_1, s_2 are known to \mathcal{V} .

$$s_1[M_2] + s_2[\hat{M}_2] \neq [\theta_1 M_2 + \theta_2 \hat{M}_2]$$

 $[\hat{M}_2] = \hat{M}_2$ trivial commitment (not hiding). Use ZKPOK to show that the commitments

$$[M_2], [\hat{M}_2], [\theta_1 M_2 + \theta_2 \hat{M}_2]$$

are such that

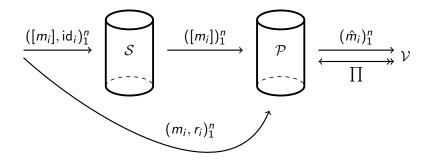
$$s_1M_2 + s_2\hat{M}_2 = \theta_1M_2 + \theta_2\hat{M}_2$$

where s_1, s_2 are known to \mathcal{V} .

This is exactly the equation \mathcal{V} wants to verify!

✓ \mathcal{V} picks a random $\rho \rightarrow \mathcal{P}$ ✓ Both compute $\hat{M}_i = \hat{m}_i - \rho$, \mathcal{P} computes $M_i = m_i - \rho$ ✓ \mathcal{P} picks θ_i and computes $[\theta_{k-1}M_k + \theta_k \hat{M}_k] \rightarrow \mathcal{V}$ ✓ \mathcal{V} picks a challenge $\beta \rightarrow \mathcal{P}$ ✓ \mathcal{P} solves linear system by determining $s_i \rightarrow \mathcal{V}$ ✓ \mathcal{V} verifies the linear system *using ZKPOK* for each equation

Conclusion and Additional Work



- Proof of shuffling using commitments
- Verifiable encryption of (m, r)
- Multiple intermediate servers S_i