

Cyber-attacks against the Cyber-enabled ship

Critical Infrastructure Security and Resilience Group Dep. of Information Security and Communication technology

COINS Winter School, Finse, 2019

Ph.D student: Georgios Kavallieratos, <u>georgios.kavallieratos@ntnu.no</u> Supervisor: Sokratis K. Katsikas

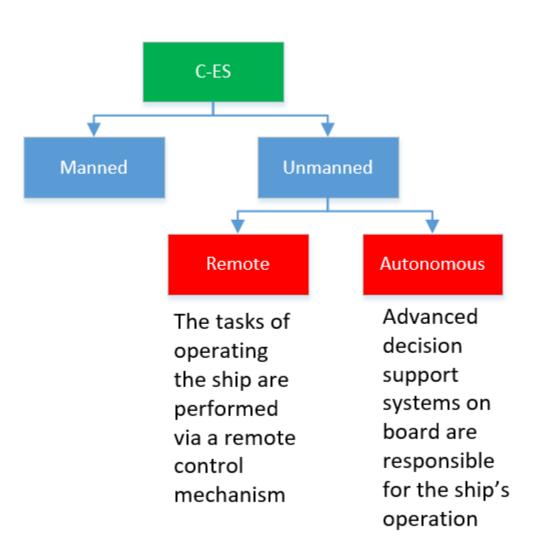
- Cyber-enabled ship: aim of the project
- Cyber-enabled ship systems
- Digging deeper to the architecture...
- Security analysis of OT systems
- Maritime Architecture Framework MAF
- Towards a Cyber-physical Range C-ES testbed
- Ongoing and future work

Aim of the project

Autonomous ship security, COINS Winter School, Finse, 2019

Security of the Cyber-enabled ship, 3 years Project

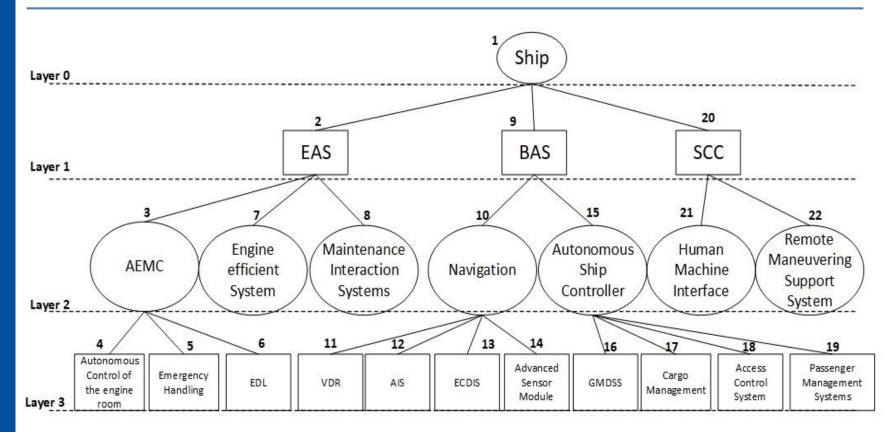
Goals of the project:


G1: Define a reference architecture for the C-ES:
 O Identify C-ES's cyber-physical systems
 O Clarify systems interconnections and interdependencies

G2: Identify potential security and safety risks.

G3: Propose an appropriate security architecture for the C-ES.

Cyber-enabled ship: what it is..



- Cyber-enabled ship: aim of the project
- Cyber-enabled ship systems
- Digging deeper to the architecture...
- Security analysis of OT systems
- Maritime Architecture Framework MAF
- Towards a Cyber-physical Range C-ES testbed
- Ongoing and future work

Cyber-Enabled ship systems

Autonomous ship security, COINS Winter School, Finse, 2019

System architecture

Digging deeper to the architecture

Autonomous ship security, COINS Winter School, Finse, 2019

Engine Automation Systems

- Autonomous Engine Monitoring and Control-AEMC
- Autonomous Control of the Engine Room
- Emergency Handling-EmH
- Engine Data Logger-EDL
- Engine Eciency System-EES
- Maintenance Interaction System-MIS

Bridge Automation Systems

- Navigation System
- Voyage Data Recorder-VDR
- Automatic identication system-AIS
- Electronic Chart Display and Information System-ECDIS
- Advanced Sensor Systems-ASS
- Autonomous Ship Controller
- Global Maritime Distress and Safety System-GMDSS
- Cargo Management / Cargo Control Room-CCR
- Access Control system
- Passenger service system

Shore Control Center

- Human Machine Interface-HMI
- Remote Maneuvering Support System-RMSS

- Cyber-enabled ship: aim of the project
- Cyber-enabled ship systems
- Digging deeper to the architecture...
- Security analysis of OT systems
- Maritime Architecture Framework MAF
- Towards a Cyber-physical Range C-ES testbed
- Ongoing and future work

Security analysis of OT systems

Autonomous ship security, COINS Winter School, Finse, 2019

System Identification

- Identify System
 Architecture
- Analyze
 Interconnections

Attack Development

 Develop STRIDE attack scenarios Impact Deternination

 According to specific Criteria Likelihood Determination

According to specific Criteria

٠

- **Risk Analysis**
- Risk Matrix

STRIDE-Attack scenarios -AIS

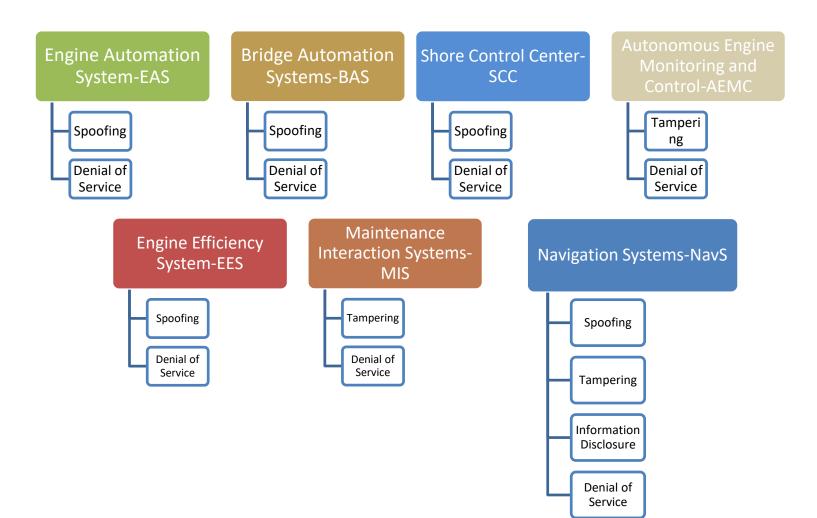
Autonomous ship security, COINS Winter School, Finse, 2019

STRIDE

Т

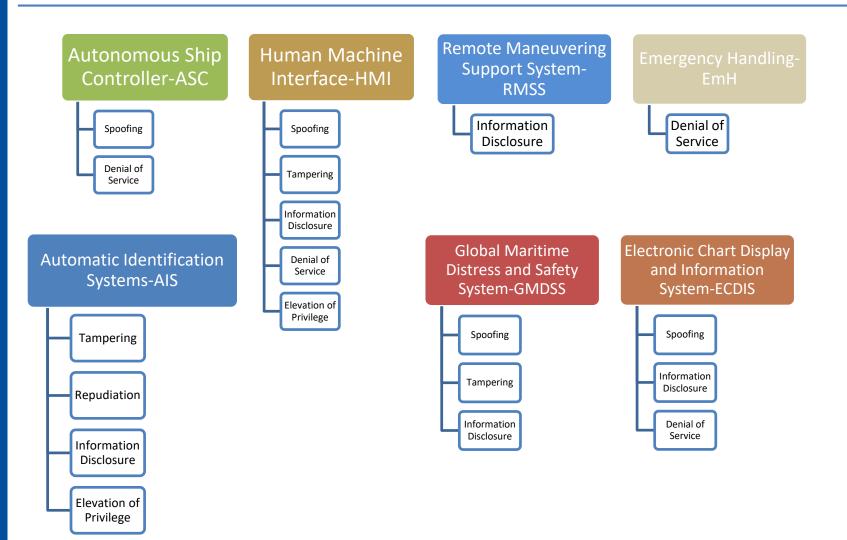
- Spoofing –
- Tampering
- Repudiation______
- Information disclosure ——
- Denial of service Av
- Elevation of privileges —

Security Properties


- Authentication
- Integrity
- Non-repudiation
- Confidentiality
- Availability
- Authorization

Automatic Identification System-AIS

- S An adversary using another AIS device is able to spoof their identity and receive system information. This sub-system's exposure to the Internet is medium.
- T Altering the system's data is an important problem for the ship since Λ IS has information which may be confidential.
- R AIS is an automatic system and its internal procedures are well defined. Repudiation of its actions is not acceptable and could result in economic damage to the ship owner.
- I As already noted, this system's information is confidential, and its disclosure could cause problems to the infrastructure. Information about cargo and destination are included in this sub-system, so a potential leak may influence the ship's operation.
- D The loss of availability could affect the ship's operations directly, because AIS handles ship traffic information and other static and dynamic information on the vessel.
- E If an adversary gains administrative rights in the system, s/he will be able to execute unwanted action, such as changing ship navigation information.



STRIDE Highly critical threats (1/2)

STRIDE Results (2/2)

Security analysis summary

	Layer 1 Systems			Layer 2 Systems							La							
Τ	EAS	BAS	SCC	AEMC	EES	MIS	NavS	ASC	HMI	RMSS	EmH	AIS	ECDIS	GMDSS				
							•											
							•	-								H	М	L
S	Н	Н	Н	M	Н	М	Н	Н	Н	М	М	М	Н	Н		9	5	-
Τ	М	М	М	Н	М	н	Н	М	Н	М	М	Н	М	Н		6	8	-
R	L	М	L	M	L	L	М	L	L	L	L	Н	М	М		1	4	8
1	L	Μ	L	L	L	L	Н	L	Н	Н	L	Н	Н	Н		6	1	7
D	Н	н	Н	Н	Н	Н	Н	Н	Н	М	Н	М	Н	М	1	.1	3	-
Ε	Μ	М	М	M	М	М	М	М	Н	M	М	Н	L	М		2	11	1
Н	2	2	2	2	2	2	4	2	5	1	1	4	3	3			Count p	er
M	2	4	2	3	2	2	2	2	-	4	3	2	2	3		Cour	nt per	
L	2	-	2	1	2	2	. – S	2	1	1	2	-	1	-		Syste	and the second second	

- Cyber-enabled ship: aim of the project
- Cyber-enabled ship systems
- Digging deeper to the architecture...
- Security analysis of OT systems
- Maritime Architecture Framework MAF
- Towards a Cyber-physical Range C-ES testbed
- Ongoing and future work

Maritime Architecture Framework-MAF

Autonomous ship security, COINS Winter School, Finse, 2019

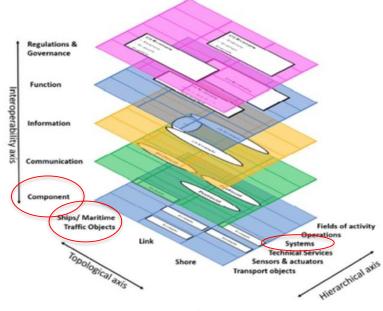


Fig. 2: MAF cube

- Identify vessel's cyber-physical systems
- Clarify their interconnections, dependencies and interdependencies

NTNU

Maritime Architecture Framework-MAF

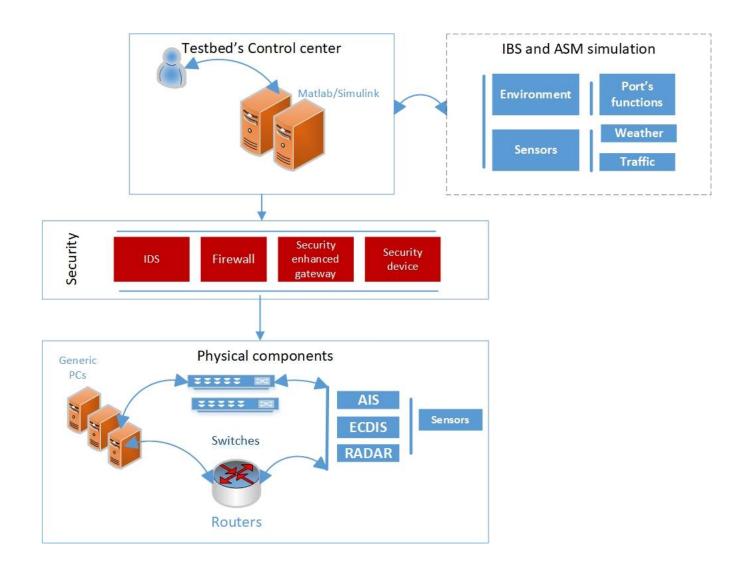
Autonomous ship security, COINS Winter School, Finse, 2019

	Regulations	Functions	Information	Communication	Components
C-ES	COLREGS	Navigation	State/value of collision avoid-	GPS receivers	Auto Pilot
Sensors & Actu- ators	NMEA 2000	Environment monitoring	ance sensors State/value of steering sensors	Satellite anten- nas	Position sensors
	Directive 2010/65/EU	Temperature, speed and	State/value of engine room	Temperature	Temperature, speed and vibra- tion sensors
		surements		actuators), speed and vibra- tion sensors	

Figure 1. Interoperability axis of the C-ES

	Transport objects	Sensors/Actuators	Technical services	Operations	Fields of activity
C-ES	Load/unload cargo	Auto Pilot	Fail to safe	Navigation	Communication with authorities
Functions	Transport cargo	Environment understanding	Fire protection	Docking	Ensure seaworthiness
	Monitor cargo		Power generation	Mooring	Handle port operations

Figure 2. Hierarchical axis of the C-ES


NTNU

- Cyber-enabled ship: aim of the project
- Cyber-enabled ship systems
- Digging deeper to the architecture...
- Security analysis of OT systems
- Maritime Architecture Framework MAF
- Towards a Cyber-physical Range C-ES testbed
- Ongoing and future work

Towards a Cyber-physical Range: A use case for the C-ES

Ongoing and future work

Autonomous ship security, COINS Winter School, Finse, 2019

- Currently we are working on the security requirements elicitation for the C-ES using SecureTropos methodology.
- As future work, we will implement the aforementioned testbed and we will define an appropriate risk assessment method that combines safety and security risks aiming to propose a secure system architecture.

 Publications: 1) Cyber-attacks against the autonomous ship, Georgios Kavallieratos, Sokratis Katsikas and Vasileios Gkioulos, CyberICPS 2018, Barcelona
 2) Towards a Cyber-physical Range, Georgios Kavallieratos, Sokratis Katsikas and Vasileios Gkioulos, AsiaCCS 2019, New Zealand

Thank you! Questions?