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Boolean Functions

For n and m positive integers
Boolean functions: F : Fn

2 → F2
Vectorial Boolean (n,m)-functions: F : Fn

2 → Fm
2

Initial motivation for introduction of Boolean functions:
fundamental mathematics;
mathematical logic.

Modern applications of Boolean functions:
reliability theory, multicriteria analysis, mathematical
biology, image processing, theoretical physics, statistics;
voting games, artificial intelligence, management science,
digital electronics, propositional logic;
coding theory, combinatorics, sequence design,
cryptography.
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On the Number of Boolean Functions

BFn is the set of Boolean functions F : Fn
2 → F2.

|BFn| = 22n

n 4 5 6 7 8

|BFn| 216 232 264 2128 2256

≈ 6 · 104 4 · 109 1019 1038 1077

BF n
n is the set of vectorial Boolean functions F : Fn

2 → Fn
2.

|BF n
n | = 2n2n

n 4 5 6 7 8

|BF n
n | 264 2160 2384 2896 22048
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Cryptographic properties of functions

S-boxes are vectorial Boolean functions used in block ciphers
to provide confusion. They should possess certain properties to
ensure resistance of the ciphers to cryptographic attacks.

Main cryptographic attacks on block ciphers and corresponding
properties of S-boxes:

Linear attack – Nonlinearity

Differential attack – Differential uniformity

Algebraic attack – Existence of low degree multivariate
equations

Higher order differential attack – Algebraic degree

Interpolation attack – Univariate polynomial degree
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Optimal Cryptographic Functions

Optimal Cryptographic functions

are vectorial Boolean functions optimal for primary
cryptographic criteria (APN, AB etc.);

are UNIVERSAL - they define optimal objects in several
branches of mathematics and information theory (coding
theory, sequence design, projective geometry,
combinatorics, commutative algebra);

are "HARD-TO-GET" - there are only a few known
constructions (12 AB, 17 APN);

are "HARD-TO-PREDICT" - most conjectures are proven
to be false.
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Binary expansion and representation of integers

Binary expansion of an integer k , 0 ≤ k < 2n:

k =
n−1∑
s=0

2sks,

where ks, 0 ≤ ks ≤ 1.
2-weight of k :

w2(k) =
n−1∑
s=0

ks.

vk = (kn−1, ..., k0) is the binary representation of k .
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Truth Table representation of functions

For F : Fn
2 → Fm

2 the sequence (F (v0), ...,F (v2n−1)) is called
the truth table of F .
Example 1 Truth table of F : F3

2 → F2: (0,1,0,0,0,1,0,1).

x1 x2 x3 F (x1, x2, x3)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

k 0 1 2 3 4 5 6 7

F (vk ) 0 1 0 0 0 1 0 1 8 / 79
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ANF representation of functions

Algebraic normal form ANF of F : Fn
2 → Fm

2 :

F (x1, ..., xn) =
∑
u∈Fn

2

au

n∏
i=1

xui
i , au ∈ Fm

2 , u = (u1, ...,un).

The algebraic degree d◦(F ) of F is the degree of its ANF.
F is affine if d◦(F ) ≤ 1.
F is quadratic if d◦(F ) ≤ 2.
Example 1

F (x1, x2, x3) = x1x2x3 + x2x3 + x3

d◦(F ) = 3
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Field definition

A field (G,+, ·) is a set G with binary operations +, · s.t.
(1) a + b = b + a and a · b = b · a for ∀a,b ∈ G,
(2) a + (b + c) = (a + b) + c and a · (b · c) = (a · b) · c for
∀a,b, c ∈ G,

(3) a · (b + c) = (a · b) + (a · c) for ∀a,b ∈ G,
(4) there exist elements of G, denoted 0 and 1, and called

additive and multiplicative identities s.t. a + 0 = a for
∀a ∈ G, and a · 1 = a for ∀a ∈ G \ {0},

(5) for ∀a ∈ G there exist elements of G, denoted −a and, if
a 6= 0, a−1, called additive and multiplicative inverses, s.t.
a + (−a) = 0 and a · a−1 = 1.
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Finite Fields Properties

Any finite field (G,+, ·) consists of pn elements for some
prime p, called the characteristic of the field, and some
positive integer n.
Then denote Fpn= (G,+, ·) and F∗pn= Fpn \{0}.
Any prime field Fp can be identified with the set
{0,1, ..,p − 1} where addition and multiplication is taken
modulo p.
α ∈ F∗pn is a primitive element of F∗pn if for any a ∈ F∗pn there
is 0 ≤ k ≤ 2n − 2 s.t. a = αk .
(p − 1)a = −a, and for p = 2 then a = −a.
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Univariate representation of functions

The univariate representation of F : F2n → F2m for m|n:

F (x) =
2n−1∑
i=0

cix i , ci ∈ F2n .

The univariate degree of F is the degree of its univariate
representation.
Example 1

F (x) = x7 + αx6 + α2x5 + α4x3

where α is a primitive element of F23 .
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Algebraic degree of univariate function

Algebraic degree in univariate representation of F

F (x) =
2n−1∑
i=0

cix i , ci ∈ F2n .

d◦(F ) = max
0≤i<2n,ci 6=0

w2(i).
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Special Functions

F is linear if

F (x) =
n−1∑
i=0

bix2i
.

F is affine if it is a linear function plus a constant.
F is quadratic if for some affine A

F (x) =
n−1∑

i,j=0,i 6=j

bijx2i+2j
+ A(x).

F is power function or monomial if F (x) = xd .
F is permutation if it is a one-to-one map.
The inverse F−1 of a permutation F is s.t.
F−1(F (x)) = F (F−1(x)) = x .
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Trace and Component functions

Trace function from F2n to F2m for m|n:

trm
n (x) =

n/m−1∑
i=0

x2im
.

Absolute trace function:

trn(x) = tr1
n (x) =

n−1∑
i=0

x2i
.

For F : F2n → F2m and v ∈ F∗2m

trm(vF (x))

is a component function of F .
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Differential Uniformity and Derivatives of Functions

Differential cryptanalysis of block ciphers was introduced
by Biham and Shamir in 1991.

F : F2n → F2n is differentially δ-uniform if

F (x + a) + F (x) = b, ∀a ∈ F∗2n , ∀b ∈ F2n ,

has at most δ solutions.

Differential uniformity measures the resistance to
differential attack [Nyberg 1993].

The derivative of F in direction a ∈ F∗2n is
DaF (x) = F (x + a) + F (x).

δF (a,b) denotes the number of solutions of
F (x + a) + F (x) = b.
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Almost Perfect Nonlinear Functions

F is almost perfect nonlinear (APN) if δ = 2.
APN functions are optimal for differential cryptanalysis.

First examples of APN functions [Nyberg 1993]:
Gold function x2i+1 on F2n with gcd(i ,n) = 1;
Inverse function x2n−2 on F2n with n odd.
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Necessary and Sufficient Conditions for APN

|{F (x + a) + F (x) : x ∈ F2n}| = 2n−1 for any a ∈ F∗2n .

DaF is a two-to-one mapping for any a 6= 0.

For every (a,b) 6= 0 the system{
x + y = a
F (x) + F (y) = b

admits 0 or 2 solutions.

The function γF : F2
2n → F2 defined by

γF (a,b) =
{

1 if a 6= 0 and δF (a,b) 6= 0
0 otherwise

has the weight 22n−1 − 2n−1.
19 / 79
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Quadratic and Power APN Functions

F (x) = xd on F2n , then F is APN iff D1F is a two-to-one
mapping. Indeed, for any a 6= 0

DaF (x) = (x + a)d + xd = adD1F (x/a).

If F is quadratic then F is APN iff F (x + a) + F (x) = F (a)
has 2 solutions for any a 6= 0.
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Nonlinearity of Functions

Linear cryptanalysis was discovered by Matsui in 1993.

Distance between two Boolean functions:

d(f ,g) = |{x ∈ F2n : f (x) 6= g(x)}|.

Nonlinearity of F : F2n → F2m :

NF = min
a∈F2n ,b∈F2,v∈F∗2m

d(trm(v F (x), trn(ax) + b)

Nonlinearity measures the resistance to linear attack
[Chabaud and Vaudenay 1994].
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Walsh Transform of an (n,m)-Function F

λF (u, v) =
∑

x∈F2n

(−1)trm(v F (x))+trn(ax), u ∈ F2n , v ∈ F∗2m .

Walsh coefficients of F are the values of its Walsh
transform.

Walsh spectrum of F is the multi-set of all Walsh
coefficients of F .

The extended Walsh spectrum of F is the multi-set of
absolute values of all Walsh coefficients of F .
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Walsh Transform and APN Functions

For any (n,n)-function F∑
a,b∈F2n

δF (a,b)2 =
1

22n

∑
a,b∈F2n

λF (a,b)4

F is APN iff ∑
u,v∈F2n ,v 6=0

λ4
F (u, v) = 23n+1(2n − 1).
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The Nonlinearity of F via Walsh Transform

NF = 2n−1 − 1
2

max
u∈F2n ,v∈F∗2m

|λF (u, v)|

Covering radius bound for an (n,m)-function F :

NF ≤ 2n−1 − 2n/2−1.

NF = 2n−1 − 2n/2−1 iff λF (u, v) = ±2n/2 for any u ∈ F2n ,
v ∈ F∗2m . Then F is called bent.

Bent (n,m)-functions exist iff n is even and m ≤ n/2.
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Almost Bent Functions

Sidelnicov-Chabaud-Vaudenay bound for m ≥ n − 1:

NF ≤ 2n−1 − 1
2

√
3 · 2n − 2− 2

(2n − 1)(2n−1 − 1)
2m − 1

.

It is tight iff m = n and (n,n)-functions achieving this bound
have NF = 2n−1 − 2

n−1
2 and are called almost bent (AB).

AB functions are optimal for linear cryptanalysis.

F is AB iff λF (u, v) ∈ {0,±2
n+1

2 }.

AB functions exist only for n odd.

F is maximally nonlinear if n = m is even and
NF = 2n−1 − 2

n
2 (conjectured optimal).
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Almost Bent Functions II

If F is AB then it is APN.
If n is odd and F is quadratic APN then F is AB.

Algebraic degrees of AB functions are upper bounded by
n+1

2 .

First example of AB functions:

Gold functions x2i+1 on F2n with gcd(i ,n) = 1, n odd;

Gold APN functions with n even are not AB;

Inverse functions are not AB.

27 / 79



Preliminaries
Equivalence Relations of Functions

APN Polynomial Constructions, Their Applications and Properties

Representations of Functions
Differential Uniformity and APN Functions
Nonlinearity and AB Functions

Necessary and Sufficient Conditions for AB

For every a,b ∈ F2n the system of equations{
x + y + z = a
F (x) + F (y) + F (z) = b

has 3 · 2n − 2 solutions if b = F (a), and 2n − 2 otherwise.

The function γF : F2
2n → F2

γF (a,b) =
{

1 if a 6= 0 and δF (a,b) 6= 0
0 otherwise

is bent.

F is APN and all its Walsh coefficients are divisible by 2
n+1

2 .
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Almost Bent Power Functions

In general, checking Walsh spectrum for power functions is
sufficient for a ∈ F2 and b ∈ F∗2n .

F (x) = xd is AB on F2n iff λF (a,b) ∈ {0,±2
n+1

2 } for a ∈ F2,
b ∈ F∗

2n , since λF (a,b) = λF (1,a−db) for a ∈ F∗
2n .

In case of power permutation, sufficient for b = 1 and all a.

If F = xd is a permutation, F is AB iff λF (a,1) ∈ {0,±2
n+1

2 }
for a ∈ F2n , since λF (a,b) = λF (ab− 1

d ,1).
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Importance of Equivalence Relations for Functions

Equivalence relations preserving main cryptographic properties
(APN and AB) divide the set of all functions into classes.

They can be powerful construction methods providing for
each function a huge class of functions with the same
properties.
Instead of checking invariant properties for all functions, it
is enough to check only one in each class.
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Cyclotomic, Linear, Affine, EA- and EAI- Equivalences

F and F ′ are affine (resp. linear) equivalent if

F ′ = A1 ◦ F ◦ A2

for some affine (resp. linear) permutations A1 and A2.

F and F ′ are extended affine equivalent (EA-equivalent) if

F ′ = A1 ◦ F ◦ A2 + A

for some affine permutations A1 and A2 and some affine A.

F and F ′ are EAI-equivalent if F ′ is obtained from F by a
sequence of applications of EA-equivalence and inverses
of permutations.

Functions xd and xd ′ over F2n are cyclotomic equivalent if
d ′ = 2i · d mod (2n − 1) or, d ′ = 2i/d mod (2n − 1) (if
gcd(d ,2n − 1) = 1).
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Invariants and Relation Between Equivalences

Linear equivalence ⊂ affine equivalence ⊂ EA-equivalence
⊂ EAI-equivalence.

Cyclotomic equivalence ⊂ EAI-equivalence.

APNness, ABness and resistance to algebraic attack are
preserved by EAI-equivalence.

Algebraic degree is preserved by EA-equivalence but not
by EAI-equivalence.

Permutation property is preserved by cyclotomic and affine
equivalences (not by EA- or EAI-equivalences).
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EAI-equivalence

If F and F + A are permutation for some F and an affine A then
(F + A)−1 is not necessarily EA-equivalent to F or F−1(2005).

Example: If F (x) = x
1

2i+1 , A(x) = trn/3(x + x22i
) over F2n , then

(F + A)−1(x) = x2i+1+(trn/3(x2i+1))6+(trn/3(x2i+1))5+(trn/3(x2i+1))3

+(trn/3(x2i+1))4 + x2i
trn(x)trn/3(x2i+1 + x22s(2i+1))

+x trn(x)trn/3(x2i+1 + x2s(2i+1)) + x2i
trn/3(x2(2i+1) + x22s+1(2i+1))

+x trn/3(x2(2i+1) + x2s+1(2i+1)) + trn(x)trn/3(x2i+1 + x4(2i+1))

with s = i [mod 3], gcd(2i ,n) = 1 and n ≥ 9

d◦(F−1) = 2, d◦(F ) = n+1
2 , d◦((F + A)−1) = 4.
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Known AB power functions xd on F2n

Functions Exponents d Conditions on n odd

Gold (1968) 2i + 1 gcd(i, n) = 1, 1 ≤ i < n/2

Kasami (1971) 22i − 2i + 1 gcd(i, n) = 1, 2 ≤ i < n/2

Welch (conj.1968) 2m + 3 n = 2m + 1

Niho 2m + 2
m
2 − 1, m even n = 2m + 1

(conjectured in 1972) 2m + 2
3m+1

2 − 1, m odd

Welch and Niho cases were proven by Canteaut, Charpin,
Dobbertin (2000) and Hollmann, Xiang (2001), respectively.
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Known APN power functions xd on F2n

Functions Exponents d Conditions

Gold 2i + 1 gcd(i, n) = 1, 1 ≤ i < n/2

Kasami 22i − 2i + 1 gcd(i, n) = 1, 2 ≤ i < n/2

Welch 2m + 3 n = 2m + 1

Niho 2m + 2
m
2 − 1, m even n = 2m + 1

2m + 2
3m+1

2 − 1, m odd

Inverse 2n−1 − 1 n = 2m + 1

Dobbertin 24m + 23m + 22m + 2m − 1 n = 5m

This list is up to cyclotomic equivalence and is conjectured
complete (Dobbertin 1999).
For n even the Inverse function is differentially 4-uniform
and maximally nonlinear and is used as S-box in AES with
n = 8.
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Open problems in the beginning of 2000

All known APN functions were power functions up to
EA-equivalence.

Power APN functions are permutations for n odd and
3-to-1 for n even.

Open problems:
1 Existence of APN polynomials (EA-)inequivalent to power

functions.

2 Existence of APN permutations over F2n for n even.
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CCZ-Equivalence

The graph of a function F : F2n → F2n is the set

GF = {(x ,F (x)) : x ∈ F2n}.
F and F ′ are CCZ-equivalent if L(GF ) = GF ′ for some affine
permutation L of F2n × F2n [Carlet, Charpin, Zinoviev 1998].

CCZ-equivalence
preserves differential uniformity, nonlinearity, extended
Walsh spectrum and resistance to algebraic attack.

is more general than EAI-equivalence [2005].

was used to disprove two conjectures of 1998:

There exist AB functions EA-inequivalent to any
permutation [B., Carlet, Pott 2005].
For n even there exist APN permutations for n = 6 [Dillon et
al. 2009].
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Equivalence more general than CCZ-equivalence?

The indicator of the graph GF of F : Fn
2 → Fm

2 :

1GF (x , y) =
{

1 if y = F (x)
0 otherwise

.

F and F ′ are CCZ-equivalent iff 1GF ′
= 1GF ◦ L for some

affine permutation L.

F and F ′ are CCZ-equivalent iff 1GF and 1GF ′
are

CCZ-equivalent [B., Carlet 2010].

Currently CCZ-equivalence is the most general known
equivalence relation preserving APN property.
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CCZ-Equivalence Formula

Let L be a affine permutation of F2
2n such that L(GF ) = GF ′ .

L(x , y) = (L1(x , y),L2(x , y)) for some affine L1,L2 : F2
2n → F2n .

Then L(x ,F (x)) = (F1(x),F2(x)), where

F1(x) = L1(x ,F (x)),

F2(x) = L2(x ,F (x)),

and
L(GF ) = {(F1(x),F2(x)) : x ∈ F2n}.

L(GF ) is the graph of a function iff F1 is a permutation.

Then, F ′ = F2 ◦ F−1
1 and L(GF ) = GF ′ .

Li(x , y) = Ai1(x) + Ai2(y)

for some affine Aij : F2n → F2n , i , j ∈ {0,1}.
41 / 79



Preliminaries
Equivalence Relations of Functions

APN Polynomial Constructions, Their Applications and Properties

EAI-equivalence and Known Power APN Functions
CCZ-Equivalence and Its Relation to EAI-Equivalence
Application of CCZ-Equivalence

CCZ- and EAI-equivalences

If L′(x , y) = L(x , y) + (a,b) for a linear permutation L and
a,b ∈ F2n , and L(GF ) = GF ′ then L′(GF ) = GF ′(x+a)+b.

If L(x , y) = (y , x) then L(x ,F (x)) = (F (x), x) gives F−1.

If L(x , y) = (x ,A(x) + y) then
L(x ,F (x)) = (x ,F (x) + A(x)) gives F (x) + A(x).

If L(x , y) = (x ,A(y)) then L(x ,F (x)) = (x ,A ◦ F (x)) gives
A ◦ F (x).

If L(x , y) = (A(x), y) then L(x ,F (x)) = (A(x),F (x)) gives
F ◦ A−1(x).
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Construction of CCZ-eq. but EAI-ineq. F and F ′

1 Find a permutation L1(x ,F (x)) = A1 ◦ F (x) + A2(x) where
A1,A2 are linear.

L1 depends on both variables is a necessary but not
sufficient condition.

F ′ is EA-equivalent to F or to F−1 (if it exists) iff there exists
a linear permutation L = (L1, L2) such that L(GF ) = GF ′ and
L1(x , y) = L(x) or L1(x , y) = L(y).

Example: Let n = 2m + 1 and s ≡ m [mod 2]. Then

L(x , y) = (x + trn(x) +
m−s∑
j=0

y22j+s
, y + trn(x))

is a linear permutation on F2
2n and L(GF ) = GF ′ for

F (x) = x3 and F ′ which is EA-equivalent to F−1.

If A1 ◦ F (x) + A2(x) is a permutation then for any L linear
permutation, L ◦ A1 ◦ F (x) + L ◦ A2(x) does not produce
new functions up to EA-equivalence.
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Construction of CCZ-eq. but EAI-ineq. F and F ′ II

1 Find a permutation L1(x ,F (x)) = A1 ◦ F (x) + A2(x) where
A1,A2 6= 0 are linear (necessary but not sufficient).

2 Then find linear function L2(x , y) = A3(y)+A4(x) such that

A1(y) + A2(x) = 0
A3(y) + A4(x) = 0

has only (0,0) solution.
For found A1 and A2 there always exist suitable A3 and A4.
For given A1 and A2 different pairs of A3 and A4 produce
EA-equivalent functions.

To construct a permutation F ′ both L1(x ,F (x)) and
L2(x ,F (x)) must be permutations.
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CCZ-eq. is more general than EAI-eq.

Example: APN maps F (x) = x2i+1, gcd(i ,n) = 1, over F2n and
F ′(x) = x2i+1 + (x2i

+ x + trn(1) + 1)trn(x2i+1 + x trn(1))
(with d(F ′) = 3) are CCZ-equivalent but EAI-inequivalent.

Take for n odd L(x , y) = (x + trn(x) + trn(y), y + trn(y) + trn(x))
and for n even L(x , y) = (x + trn(y), y).

F ′ is EA-inequivalent to permutations. This disproved the
conjecture from 1998 that every AB function is EA-equivalent to
permutation.

For an AB function F there does not always exist linear L
such that F + L is a permutation.
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First Classes of APN Maps EAI-ineq. to Monomials

APN functions CCZ-equivalent to Gold functions and
EAI-inequivalent to power functions on F2n [B., Carlet, Pott
2005].

Functions Conditions

n ≥ 4

x2i+1 + (x2i
+ x + trn(1) + 1)trn(x2i+1 + x trn(1)) gcd(i, n) = 1

6|n
[x + tr3

n(x2(2i+1) + x4(2i+1)) + trn(x)tr3
n(x2i+1 + x22i (2i+1))]2

i+1 gcd(i, n) = 1

m 6= n

x2i+1 + trm
n (x2i+1) + x2i

trm
n (x) + x trm

n (x)2i
n odd

+[trm
n (x)2i+1 + trm

n (x2i+1) + trm
n (x)]

1
2i+1 (x2i

+ trm
n (x)2i

+ 1) m|n

+[trm
n (x)2i+1 + trm

n (x2i+1) + trm
n (x)]

2i

2i+1 (x + trm
n (x)) gcd(i, n) = 1
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Relation Between Equivalences

Two power functions are CCZ-equivalent iff they are
cyclotomic equivalent.
For Gold APN monomials and quadratic APN polynomials
CCZ>EAI.
CCZ=EAI for non-quadratic power APN with n ≤ 7.
CCZ>EAI for non-power non-quadratic APN functions.

Cases when CCZ-equivalence coincides with EA-equivalence:
Boolean functions.
All bent functions.
Two quadratic APN functions.
A quadratic APN function is CCZ-equivalent to a power
function iff it is EA-equivalent to one of the Gold functions.

Cases when CCZ-equivalence differs from EA-equivalence:
For functions from Fn

2 to Fm
2 with m ≥ 2.
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CCZ-construction of Bent Functions

Although for bent functions CCZ and EA equivalences coincide,
constructing new bent functions using CCZ-equivalence is
possible [B., Carlet 2011].

A few infinite families of bent Boolean and vectorial functions
are constructed by applying CCZ-equivalence to non-bent
vectorial functions with bent components.

Example F ′(x) = x2i+1 + (x2i
+ x + 1)trn(x2i+1) and

F (x) = x2i+1 are CCZ-equivalent on F2n .
f (x) = trn(bF ′(x)) is cubic bent when n/gcd(n, i) even,
b ∈ F2n \F2i s.t. neither b nor b + 1 are (2i + 1)-th powers.
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Big APN problem

Do APN permutations exist for n even?

Negative results:
no for quadratics [Nyberg 1993],
no for F ∈ F24 [x ] if n/2 is even [Hou 2004],
no for F ∈ F2n/2 [x ] [Hou 2004].
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CCZ-construction of APN permutation for n even

The only known APN permutation for n even [Dillon et al 2009]:
Applying CCZ-equivalence to quadratic APN on F2n with
n = 6 and c primitive

F (x) = x3 + x10 + cx24

obtain a nonquadratic APN permutation
c25x57+c30x56+c32x50+c37x49+c23x48+c39x43+ c44x42+
c4x41+c18x40+c46x36+c51x35+c52x34+ c18x33+c56x32+
c53x29+c30x28+cx25+c58x24+ c60x22+c37x21+c51x20+
cx18 + c2x17 + c4x15 + c44x14 + c32x13 + c18x12 + cx11 +
c9x10 + c17x8 + c51x7 + c17x6 + c18x5 + x4 + c16x3 + c13x

Problem Find APN permutations for n ≥ 8 even.
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The first APN and AB classes CCZ-ineq. to Monomials

Let s, k ,p be positive integers such that n = pk , p = 3,4,
gcd(k ,p) = gcd(s,pk) = 1 and α primitive in F∗2n .

x2s+1 + α2k−1x2−k+2k+s

is quadratic APN on F2n and, if n is odd then it is an AB
permutation [B., Carlet, Leander 2006-2008].

This binomials disproved the conjecture from 1998 on
nonexistence of quadratic AB functions inequivalent to Gold
functions.
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Brute force proof for CCZ-inequivalence

If expression for F and F ′ are not complicated:

F ′(x) = F2 ◦ F−1
1 (x)

F ′ ◦ F1(x) = F2(x)
F ′(L1(x ,F (x))) = L2(x ,F (x))

F ′(A4(x) + A3(F (x))) + A2(x) + A1(F (x)) = 0

for some affine A1,A2,A3,A4.
Then coefficients for every monomial in the last expression
should be 0.
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Extensions of a class of APN binomials

Let s, k be positive integers such that n = 3k ,
gcd(k ,3) = gcd(s,3k) = 1 and and α primitive in F∗2n .

x2s+1 + α2k−1x2−k+2k+s

is quadratic APN on F2n .

Add more quadratic terms [McGuire et al 2008-2011]:

αx2s+1 + α2k
x2−k+2k+s

+ bx2−k+1 + dα2k+1x2k+s+2s
,

where b,d ∈ F2k , bd 6= 1.
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From APN binomials to 2t-uniform functions

Let n = 3k , gcd(3k , s) = t , gcd(3, k) = 1, k/t is odd, 3|(k + s)
and α is primitive in F2n . Then the derivatives of

F (x) = x2s+1 + α2k−1x2−k+2k+s

are 2t -to-1 and F is a permutation [Bracken et al. 2012].
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Problems for APN binomials families

Problems for APN binomials family with 4|n:
Can it be extended to trinomials and quadrinomials?

Problems for APN trinomial and quadrinomial family with 3|n:
Relaxing some conditions can we derive to functions
whose derivatives are 2r -to-1 mappings (or permutations)?
Possible adding of more tirms?
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Not yet classified APN binomial

Fbin(x) = x3 + wx36

over F210 , where w has the order 3 or 93 [Edel et al. 2005].

Find a family to which Fbin belongs.
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A class of APN hexanomials

Good candidates for being differentially 4-uniform [Dillon 2006]:

x(Ax2 + Bxq + Cx2q) + x2(Dxq + Ex2q) + Gx3q

over F2n with q = 2m and n = 2m.

Budaghyan, Carlet 2008:

x(x2i
+ xq + cx2i q) + x2i

(cqxq + bx2i q) + x (2i+1)q

is APN on F2n when gcd(i ,m) = 1, c,b ∈ F2n , b /∈ Fq and
x2i+1 + cx2i

+ cqx + 1 is irreducible over F2n .

Elements c satisfying this condition always exist [Bluher 2012].

Bracken et al. 2014: c = wβq+2i
+ γq+2i

where w has order 3
and γ2i+1 + wβ2i+1 + 1 = 0 with γq−1 6= βq−1.
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A class of APN and AB functions x3 + trn(x9)

Budaghyan, Carlet, Leander 2009:

F (x) + trn(G(x)) is at most differentially 4-uniform for any APN
function F and any function G.

x3 + trn(x9) is APN over F2n .

It is the only APN polynomial CCZ-inequivalent to power
functions which is defined for any n.

It was the first APN polynomial CCZ-inequivalent to power
functions with all coefficients in F2.
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Two classes of APN functions for n divisible by 3

Budaghyan, Carlet, Leander 2009:

There are sufficient conditions on linear L1,L2 such that
L1(x3) + L2(x9) is APN.

If n is even and L1(x) + L2(x3) is a permutation, then
L1(x3) + L2(x9) is APN.

F1(x) = x3 + α−1trn(α
3x9),

F2(x) = x3 + α−1tr3
n(α

6x18 + α12x36),

F3(x) = x3 + α−1tr3
n(α

3x9 + α6x18)

are APN over F2n when α ∈ F∗2n and n is a positive integer for
F1 and n divisible by 3 for F2 and F3.
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Known APN families CCZ-ineq. to power functions

All are quadratic.
All have the same optimal nonlinearity and for n odd they
are AB.
In general, these families are pairwise CCZ-inequivalent.
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Representatives of APN polynomial families n ≤ 12

Infinite families are identified for
only 3 out of 13 quadratic APN functions of F26 ;
only 4 out of more than 480 quadratic APN of F27 ;
only 6 out of more than 1000 quadratic APN of F28 .
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APN Polynomial CCZ-Ineq. to Monomials and
Quadratics

Only one known example of APN polynomial CCZ-inequivalent
to quadratics and to power functions for n=6:

x3 + c17(x17 + x18 + x20 + x24)+

c14(tr6(c52x3 + c6x5 + c19x7 + c28x11 + c2x13)+

tr3(c18x9) + x21 + x42)
where c is some primitive element of F26 [Leander et al, Edel et
al. 2008].

No infinite families known.
No AB examples known.
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Further constructions of APN families?

Gologlu’s family of quadratic APN trinomials on F2n

G(x) = x2k+1 +
(
trm

n (x)
)2k+1

,

with gcd(k ,n) = 1 and n = 2m = 4t [2015].
It was claimed to CCZ-inequivalent to known APN families.

G is EA-equivalent to the Gold function x2m−k+1 [B., Carlet,
Helleseth, Li, Sun 2017].

L1(x) = γ2k
x2m+k

+ γx2k
,

L2(x) = γx + γ2k
x2m

,(
L1(x)

)2m−k+1
= L2 ◦G(x)

where γ is a primitive element of F22 .
65 / 79



Preliminaries
Equivalence Relations of Functions

APN Polynomial Constructions, Their Applications and Properties

Classes of APN polynomials CCZ-inequivalent to Monomials
Applications of APN constructions
Properties of APN Functions

Classification of APN Functions

Leander et al 2008:

CCZ-classification finished for:
APN functions with n ≤ 5 (there are only power functions).

EA-classification is finished for:
APN functions with n ≤ 5 (there are only power functions
and the ones constructed by CCZ-equivalence in 2005).
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Commutative semifields

S = (S,+, ?) is a commutative semifield if all axioms of finite
fields hold except associativity for multiplication.

F : Fpn → Fpn is planar (p odd) if

F (x + a)− F (x), ∀a ∈ F∗pn ,

are permutations.
There is one-to-one correspondence between quadratic
planar functions and commutative semifields.

The only previously known infinite classes of commutative
semifields defined for all odd primes p were Dickson (1906) and
Albert (1952) semifields.

Some of the classes of APN polynomials were used as patterns
for constructions of new such classes of semifields
[B., Helleseth 2007; Zha et al 2009; Bierbrauer 2010].
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Yet another equivalence?

Isotopisms of commutative semifields induces isotopic
equivalence of quadratic planar functions more general
than CCZ-equivalence [B., Helleseth 2007].
If quadratic planar functions F and F ′ are isotopic
equivalent then F ′ is EA-equivalent to

F (x + L(x))− F (x)− F (L(x))

for some linear permutation L [B., Calderini, Carlet,
Coulter, Villa 2018].
Isotopic equivalence for APN functions?
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Isotopic construction

Isotopic construction of APN functions:

F (x + L(x))− F (x)− F (L(x))

where linear L and F an APN function.
It is not equivalence but a powerful construction method:

a new infinite family of quadratic APN functions;
for n = 6, starting with any quadratic APN it is possible to
construct all the other quadratic APNs.

Isotopic construction for planar functions?
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Crooked functions

F is crooked if F (0) = 0, for all distinct x , y , z and ∀a 6= 0,b, c,d
F (x) + F (y) + F (z) + F (x + y + z) 6= 0 and
F (x) + F (y) + F (z) + F (x + a) + F (y + a) + F (z + a) 6= 0.

Every quadratic AB permutation with F (0) = 0 is crooked.
Every crooked function is an AB permutation.
Conjecture: Every crooked function is quadratic.
Crookedness is preserved only by affine equivalence.

Known crooked functions over F2n .

Functions Exponents d Conditions

Gold (1968) x2i+1 n odd

AB binomials (2006) x2s+1 + α2k−1x2−k+2k+s
n = 3k odd

Among all 480 known quadratic AB functions with n = 7, only
Gold maps are CCZ-equivalent to permutations.
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Exceptional APN functions

A function F is exceptional APN if it is APN over F2n for infinitely
many values of n.

Gold and Kasami functions are the only known exceptional
APN functions.

It is conjectured by Aubry, McGuire and Rodier (2010) that
there are no more exceptional APN functions.

Proven for power functions [Hernando, McGuire 2010].

More partial results confirming this conjecture Jedlika,
Hernando, Aubry, McGuire, Rodier, Caullery, Delgado and
Janwa (2009-2016).
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Nonliniarity properties of known APN families

All known APN families, except inverse and Dobbertin
functions, have Gold-like Walsh spectra:

for n odd they are AB;
for n even Walsh spectra are {0,±2n/2,±2n/2+1}.

Sporadic examples of APN functions with non-Gold like Walsh
spectra:

For n = 6 only one example of quadratic APN function with
{0,±2n/2,±2n/2+1,±2n/2+2}:

x3 + a11x5 + a13x9 + x17 + a11x33 + x48.

For n = 8 there are more quadratic APN functions.
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Problems on Nonlinearity of APN functions

Find a family of quadratic APN polynomials with non-Gold
like nonliniarity.

The only family of APN power functions with unknown
Walsh spectrum is Dobbertin function:

All Walsh coefficients are divisible by 2
2n
5 but not by 2

2n
5 +1

[Canteaut, Charpin, Dobbertin 2000].

Conjecture: max |λF (a,b)| = 2
2n
5 (2

n
5 + 1) [Canteaut].

What is a low bound for nonlinearity of APN functions?
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Characterization of APN and AB functions

Let F : F2n → F2n and a,b ∈ F2n , define γF : F2
2n → F2 as

γF (a,b) =
{

1 if a 6= 0 and F (x + a) + F (x) = b has solutions,
0 otherwise.

Carlet, Charpin, Zinoviev 1998; B., Carlet, Helleseth 2011:
F is APN if and only if γF has weight 22n−1 − 2n−1.
F is AB if and only if γF is bent.
γF is determined for C1-C6 and all APN monomials except
Dobbertin’s.
For nonquadratic AB cases found γF provide potentially
new bent functions.
If F and F ′ are CCZ-equivalent then γF ′ = γF ◦ L for some
affine permutation L.

All affine invariants for γF are CCZ-invariants for F .
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Bounds on algebraic degree of APN and AB functions

If F is AB over F2n then

d◦(F ) ≤ n + 1
2

[Carlet et al 1998].
The bound is reachable (for example, the inverses of Gold
functions [Nyberg 1993]).

Bound on algebraic degree of APN?
For n odd the inverse APN function has algebraic degree
n − 1.
For n even Dobbertin function has algebraic degree
n/5 + 3.
Kasami functions have algebraic degree i + 1 for
i ≤ n/2− 1, gcd(n, i) = 1.
BCP functions can have algebraic degree m + 2 for m|n.
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APN functions of algebraic degree n

Budaghyan, Carlet, Helleseth, Li 2016:

Conjecture 1 There exists no APN function over F2n of
algebraic degree n for n ≥ 3.

This conjecture is true for n ∈ {3,4,5}.
x2n−1 + F (x) is not APN for most of the known APN
functions F over F2n .

It implies for most of the known APN functions the following
conjecture is true.

Conjecture 2 If n ≥ 3 and F ′ is a function over F2n obtained
from an APN function F by changing its value in one point then
F ′ is not APN.
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Changing two points in APN functions

F ′(x) = x2n−1 + (x + 1)2n−1 + F (x)

If F is AB and n ≥ 5 then F ′ is not AB.

F ′ is APN for n = 4 and F (x) = x3 Gold APN. Then F and F ′

are CCZ-equivalent but EA-inequivalent.

Can this happen for n ≥ 5?

Problem What is minimum number of points two APN (resp.
AB) functions can differ.

B., Carlet, Helleseth, Kaleyski 2019:
The distance between known APN functions tends to grow with
n.
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