

Science of Nakamoto Consensus

[Garay-Kiayias-Leonardos'15] [Kiayias-Panagiotakos'15] [Pass-Seeman-Shelat17]

- chain growth: chain grows proportionally with the number of time steps
- chain quality/blockchain quality/fairness: fraction of blocks proportional to mining power
- (blockchain) consistency: agreement among players on blockchain except for last σ blocks
- liveliness: no transaction censorship

Science of Nakamoto Consensus

[PSS17] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous networks. Eurocrypt'17

Theorem 2.6 (Security of Nakamoto [PSS17]). For any constant $\delta > 0$, any 0 , any super $logarithmic function <math>T_0 = \omega(\log \kappa)$ Nakamoto's blockchain protocol $\prod_{nak}(p)$ satisfies the following properties in Γ_{nak}^p -environments:

- *T*₀-consistency;
- chain growth rate (T_0, g_0, g_1) where
- chain quality (T_0, μ) where

$$\mu = 1 - (1 + \delta)\frac{\beta}{\gamma}$$

Consensus

Candidates	? ⁽³⁾ bitcoin
■ quality protocols [tie breaking rule]	 "I can raise the chain quality" UTB: Ethereum PoW, Bitcoin-NG (Aeternity, Waves) SHTB: DECOR+ (Rootstock) UDTB: Byzcoin, Omniledger Publish or Perish
Attack-resistant protocols [topology/reward distribution] this talk check [Zhang-P'19]	 "I don't need to raise the chain quality, I can defend against the attacks" Reward-all ("compensate the losers"): FruitChains, Ethereum PoW, Inclusive, SPECTRE, PHANTOM, Punishment ("fine all suspects"): DECOR+, Bahack's idea Reward-lucky (content-based reward): Subchains, Bobtail 13

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

MDP-based Method

[Saphirstein-Sompolinsky-Zohar, FC'16]

- 1. Define the attacker's utility according to the security metric of interest
- 2. Model the consensus protocol as a Markov decision process (MDP)
- 3. Compute the attacker's optimal strategies and their maximum utilities in various settings

MDP description

- S: State space
- A: Action space
- P: Stochastic transition matrix
- R: Reward matrix

MDP: Action space A for Bitcoin

a length of attacker's chain after last fork

h blocks of honest miner's chain after last fork

Adopt: attack accepts honest network chain; discard a attacker blocks

Override: attacker publishes his blocks to form longest chain (a > h) Match: most recent block was published by honest miners; attacker publishes a block to create a tie

Wait: attacker keeps mining

MDP: State space for Bitcoin

(a, h, fork)

a length of attacker's chain after last fork

h blocks of honest miner's chain after last fork

fork:

relevant: previous state was of form (a, h-1, *)
 (a ≥ h, match is feasible)
irrelevant: previous state was of form (a-1, h, *)
 match not feasible

active: honest network is already split due to a match

18

19

MDP: Transition and reward matrices

Prob. α Initial state is (1,0, irrelevant)

Prob. 1- α Initial state is (0,1,irrelevant)

Reward: (accepted attacker blocks, accepted honest blocks)

${\bf State} \times {\bf Action}$	State	Probability	Reward
$(a,h,\cdot), adopt$	(a, b, .) adopt $(1, 0, irrelevant)$		(0, h)
	(0, 1, irrelevant)	$1-\alpha$	(0,n)
(a, h,) overridet	(a-h, 0, irrelevant)	α	$(h \perp 1 0)$
$(a, n, \cdot), override$	(a-h-1, 1, relevant)	$1 - \alpha$	(n + 1, 0)
(a, h, irrelevant), wait	(a+1, h, irrelevant)	α	(0,0)
(a, h, relevant), wait	(a, h+1, relevant)	$1 - \alpha$	(0,0)
(a h activo) mait	(a+1, h, active)	α	(0,0)
(a, n, active), wall	(a-h, 1, relevant)	$\gamma \cdot (1 - \alpha)$	(h,0)
(a, n, recount), match	(a, h+1, relevant)	$(1-\gamma)\cdot(1-\alpha)$	(0,0)
[†] feasible only when $a \ge h$ [†] feasible only when $a \ge h$			

MDP-based Method

- 1. Define the attacker's utility according to the security metric of interest
- Model the consensus protocol as a Markov decision process (MDP)
- 3. Compute the attacker's optimal strategies and their maximum utilities in various settings
- 4. Compare the utilities with NC, find out when they are better/worse
- 5. Check the respective strategies, find out why

Simplified "Be	ter-Chain-Quality" Result	S better S it depends vorse
	"Better-chain-quality" Protocol	Chain Quality
	Uniform tie-breaking Ethereum PoW, Bitcoin-NG (Aeternity, Waves)	(omitted here, check the paper)
	Smallest-hash tie-breaking DECOR+ (Rootstock)	?
	Unpredictable deterministic tie- breaking DÉCOR+LAMI, Byzcoin, Omniledger	?
	Publish or perish	(omitted here, check the paper)

Better-Chain-Quality Protocols: General Results			
	 No protocol achieves the ideal chain quality when the attacker mining power α > 1/4 		
	 No protocol performs better than NC, γ = 0 for all α 		
Why?	 The protocols cannot distinguish between honest/attacker blocks 		
Why can't they?	 Information asymmetry: the attacker acts on all info; compliant miners do not 		
Why don't they?	Inconsistent assumptions: (try to be) asynchronous, acting on limited public info ²⁹		

"At	ttack-Resistant" Results			betterit dependsworse
	"Attack-resistant" Protocol	Incentive compatibility	Subversion gain	Censorship susceptibility
	Reward-all ⟨͡ᢖFruitChains	?	?	?
	Punishment ⟨₹Reward-splitting	?	?	?
	Reward-lucky ⟨͡ᢖSubchains	?	?	?
				30

FruitChains [Pass-Shi'17]

Why selfish mining fails

"[...] even if an adversary tries to erase some block mined by an honest player (which contains some honest fruits), by the chain growth and chain quality properties of the underlying blockchain, eventually an honest player will mine a new block which is stable and this honest player will include the fruits" (and fruit will still be "fresh")

FruitChains Results [Pass-Shi'17]

Theorem 4.1 (Security of FruitChain). For any constant $0 < \delta < 1$, and any p, p_f , let R = 17, $\kappa_f = 2qR\kappa$, and $T_0 = 5\frac{\kappa_f}{\delta}$. Then the FruitChain protocol denoted $\Pi_{\text{fruit}}(p, p_f, R)$ satisfies

- κ_f -consistency;
- chain growth rate (T_0, g_0, g_1) where

$$g_0 = (1-\delta)(1-\rho)np_f,$$

$$g_1 = (1+\delta)np_f$$

• fairness (T_0, δ) .

in $\Gamma^{p,p_f,R}_{\text{fruit}}$ -environments.

No parameters specified Confirmation time increases with T₀

34

FruitChains Results			betterit dependsworse	
	"Attack-resistant" Protocol	① Incentive compatibility	② Subversion gain	③ Censorship susceptibility
	Fruitchains			
 (1) (2): less 	 Risk-free units -> more audacious behaviors: attacker uses worthless blocks to invalidate honest fruits In NC a failed double spending attempt result 			ious behaviors: s to invalidate
risk to a	ittack in at	losing all bloc tacker gets the	k rewards; in e first several	FruitChains, the fruit rewards

Simplifi	ed R	esults			 better it depends worse
"Better-chain- quality"	Chain Quality	"Attack- resistant"	Incentive compa-	Subversion	Censorship susceptibility
Uniform tie- breaking		Reward-all	tibility		
Smallest-hash tie-breaking		G Fruitchains	5	igsquare	
Unpredictable deterministic tie- breaking	(<u>`</u>)	Punishment ⟨͡ᢖReward- splitting			
Publish or perish		Reward-lucky			
					44

Discussion	
Better chain quality & attack resistance?	 Practical assumptions Awareness of network conditions Loosely synchronized clock Real-world commitments Outsource liability to raise attack resistance Introduce additional punishment rules (embed proofs of malicious behavior in blockchain) Solve at layer 2 (e.g. lightning guarantees double spending resistance)

