

- The Port Communication Systems were developed during the last 20-30 years
- based on:
 - EDIFACT messages
 - database access
 - file exchange

- There is no Security Architecture existing for the Port Communication Systems
- There are no risk assessments existing for the Port Communication Systems

We need:

- Security Architecture
- Resiliency behaviour of the Port Communication System
- Migration models towards a secure Port Communication System

Information Security - distributed Processes and Systems Research Project in Germany and in Norway (proposal) Goals:

Develop a Secure and Reliable Port Communication System for the port, transport and logistics industry

Develop a Security Model for the Port Community Communication System

Adopt a **Resiliency Model** to mitigate attacks against one or more partners - without a shutdown of the entire system

What do we need to implement Information Security?

Firewall AES 256 Blockchain

Information Security - distributed Processes and Systems Research Project in Germany and in Norway (proposal) Goals:

Develop a Secure and Reliable Port Communication System for the port, transport and logistics industry

Develop a Security Model for the Port Community Communication System

Adopt a **Resiliency Model** to mitigate attacks against one or more partners without shutdown of the entire system

Improve the security of distributed communication systems by using **Blockchain technologies (DLT)**

Develop a Migration Strategy

COINS Summer School, Metochi, 23.7.2019, Thomas Kemmerich, PhD

SecProPort Hapag-Lloyd duisport BLG LOGISTICS excellence in logistics niversität Bremen db datenschutz cert dbh Logistics IT AG 14

SecProPort: Scenario Driven Project

Demonstration and evaluation of the project:

The Security Model will be realised and evaluated by setting up Scenarios together at and with the industrial project partners.

Potential Scenarios could be:

- Container terminal: information and data exchange along the transport chain of container transport
- XXL-Logistics: Paper rolls, locomotives, wind mills, etc.
- Intermodal terminal: train-road, train-port, road-port
- Single National Window

COINS Summer School, Metochi, 23.7.2019, Thomas Kemmerich, PhD

SecProPort: Process analysis:

Example: Container Export:

Phase 1: Order export
Phase 2: Start transport to the port, planing ship handling
Phase 3: Delivery of the container by truck
Phase 4: Ship loading

SecProPort: Process analysis:

There are many more processes available!

Threats against Transport, Logistics and Port IT

heise online > News > 2017 > KW 33 > NotPetya: Maersk erwartet bis zu 300 Millionen Dollar Verlust

NotPetya: Maersk erwartet bis zu 300 Millionen Dollar Verlust

16.08.2017 18:08 Uhr - Fabian A. Scherschel

worlesen

Die Gunvor Mærsk der Maersk Line mit Kurs auf den Hamburger Hafen. (Bild: Bernhard Fuchs, CC BY 2.0)

Containerterminals standen still, Schiffe konnten weder gelöscht noch beladen werden: Mehrere Wochen hielt der Trojaner den dänischen Mega-Konzern Maersk in Atem. Die Reederei Maersk Line und der Hafenbetreiber APM Terminals wurden schwer getroffen.

What do we need to implement Information Security?

Firewall AES 256 Blockchain

Distributed Ledger Technology (DLT)

DLT/Blockchain - Basics

e.q. Bitcoin:

- a new block will be added every 10 minutes
- block size 1 MB
- a timestamp is added to the block
- a nonce will be used for the Proof of Work (PoW)
- each transaction (part of the data) will be broadcasted to all other nodes

DLT/Blockchain - Basics

Characteristics of a DLT/Blockchain

1.Consensus

2.Distributed

3.Trustless

Proof of Work Proof of Stake

DLT/Blockchain - Basics

Consensus:

Give me the pen, please.

You hear the words and you understand what to do

DLT/Blockchain - Basics

Distribution:

Centralized Database

Distributed Ledger (Blockchain)

- every participant has a copy of the ledger
- every participant can read and/or write to the ledger
- there is no centralised instance controlling the content and/or there status of the ledger

DLT/Blockchain - Basics

DLT/Blockchain - Basics

Trustless:

Example Transport Chain:

DLT/Blockchain - Basics Proof of work: Consensus mestam mestam mestam nonce nonce hash nonce hash hash data data data

- you see a state of a ledger that is good
 - it will not be possible to show later a new ledger that state is better
 - —> that means: it is not possible to create a new ledger later, that is better than the old one!

Adding a transaction to a verified block at a certain timestamp requires the computing power of the whole DLT network!

• Solve a cryptographic puzzle e.q. SHA 256 fulfilling certain conditions.

E.q. find a hash value with a dedicated number of leading nils (Bitcoin)

- This verifies a block
- Incentives: who solves the puzzle receives coins in the next block of the DLT —> MINING

This requires a lot of computational power

Proof of work is only useful when trustless consensus is required!

In crypto currency: the merchant waits around 6 blocks to be sure that the coins are valid

- A set of validators are taken on turns to vote on the next valid block
- The weight of each validator depends on his deposit (stake)
- The algorithm here pseudo randomly selects a validator during a distinct time slot (may be every 10 s)
 —> chain based
- Every validator votes for blocks, randomly selected.
 Many validators agree on a block
 —> Byzantine fault Tolerance Problem

Ethereum Casper relays on PoS, to reduce computational power

DLT/Blockchain - Basics

Double Spending Problem

- The transaction is added to the Blockchain
- Each block will be validated by a miner
 —> confirmation
- the merchant waits
 6 confirmations to be sure of no double spending

It is unlikely that someone computes back 6 confirmations

1FA30BC1

1FA30BC1

36

1FA30BC1

DLT/Blockchain - Basics

Double Spending Problem

51% Attack:

An attacker owns 51% of the computing notes (hash power)

- —> the attacker can withdraw any transaction and setup a 'Private Blockchain/DLT'
- this is very cost intensive
- did not happen until now

DLT/Blockchain - Basics

Double Spending Problem

Race Attack:

—> if the confirmation of the transaction of the attacker arrives first, the merchant will not get the coins

also here waiting 6 confirmations the merchant can be sure to get the coins

DLT/Blockchain - Basics

Public vs. Private DLT/Blockchain

What have both in common:

- Peer-to-peer network
- Based on decentralization
- Each node has a copy of the DLT/Blockchain
- Verification by a consensus protocol
- immutable

DLT/Blockchain - Basics

Public DLT/Blockchain

Advantages:

- Open for everyone in an open eco-system everybody can verify the DLT/Blockchain
- Use of common networking protocols
- Consensus building by algorithms or similar
- Networking effects by use of many participants
- no fails and manipulations as it could appear in centralised systems
- high security, relatively low costs (PoW?)
- Mostly known: Bitcoin, Ethereum

DLT/Blockchain - Basics

Public DLT/Blockchain

Disadvantages:

- Memory space per block ≈ 1 MB
 —> to less for transaction and memory requirements of
 companies
- Transaction delay (PoW)
- Computational power, PoW —> costs
- open network —> no confidentiality and privacy

DLT/Blockchain - Basics

Private DLT/Blockchain

Advantages:

- Limited choice of participants (e.q. a company or community)
- One unit can be can be responsible for consensus building
- Blocksize can be increased
- Transactions can be withdrawn
- Known validators —> 51%-Attack is not possible
- transactions are cheaper:
 - less nodes necessary
 - no PoW —> less computational effort
- no delay because of no PoW
- only read access for dedicated nodes —> privacy (GDPO)

COINS Summer School, Metochi, 23.7.2019, Thomas Kemmerich, PhD

DLT/Blockchain - Basics

Smart Contracts

- Small program code as part of the DLT/Blockchain
- Smart Contracts are part of the transaction
- Smart Contracts are self-contained computer programs
- Smart Contracts can be verified by everyone (it is open in the DLT/Blockchain)

Smart Contracts have changed DLT/Blockchain from a pure 'storage' to a system of 'Distributed Virtual Machines'

COINS Summer School, Metochi, 23.7.2019, Thomas Kemmerich, PhD

DLT/Blockchain - Basics

Smart Contracts

Smart Contract is a different and new approach:

- Combination of data storage and connected active processes as a result of the transaction
- Provisioning of Services:
 - Transfer of goods (trade transaction)
 - Provisioning of Security Services
 - * Virus detection
 - * Encryption
 - * Signature check

*

DLT/Blockchain - Basics

Publik Key Infrastructure, PKI

only a short description:

Trusted Party:

- Public Administration
- Community
- Service Provider
- Dedicated Player

Database

Name	ID	Proof	Pub.
			-Key

What do we need to implement Information Security?

AES 256 Blockchain

Virtual Network (Security) Functions

Software Defined Networks, SDN

Software Defined Network Design:

we divide the device into two parts:

control plane

forwarding (data) plane

Switch

COINS Summer School, Metochi, 23.7.2019, Thomas Kemmerich, PhD

Spanning Tree Routing Protocols ACL IEEE 802.1q HSRP

Software Defined Networks, SDN

Software Defined Network Design:

COINS Summer School, Metochi, 23.7.2019, from Nieks Weknewnch Stanford University, VISA Workshop 2009

Network Virtualization Function, NFV

Application Programming

Network Services

Control Plane

Forwarding Plane

Diffie-Hellmann, DH

Secure Key Exchange, SDN and NFV

Diffie-Hellmann, centralized key distribution

P4: Programming Switches

Header Injection

table routing {

size : 2048:

apply {

control ingress() {

routing.apply();

key = { ipv4.dstAddr : lpm; }
actions = { drop; route; }

O TRY IT! GET THE CODE ON GITHUB

Protocol Independent

P4 programs specify how a switch processes packets.

Target Independent

P4 is suitable for describing everything from high- performance forwarding ASICs to software switches.

Field Reconfigurable

P4 allows network engineers to change the way their switches process packets after they are deployed.

www.p4.org

- Segment Routing —> path direction of packets
- Direct packets to Network Service Functions (encryption, virus scan, ...)

Information Security in Distributed Systems

We have different proposals:

- DLT/Blockchain
- Smart Contracts
- PKI (centralized/decentralized)
- NFV
- Network Header Injection (P4)

COINS Summer School, Metochi, 23.7.2019, Thomas Kemmerich, PhD

Information Security in Distributed Systems

That is where we are now!

Thank you for your attention!

Information Security in Distributed Systems

55

How to improve Information Security in highly distributed systems?

Group work — 4-5 participants per group

- take one of the scenarios of the transport, logistics and port business
- use the proposed measures/techniques
- find new measures
- look for useful combinations
- find new, composed solutions and procedures

present your findings (10 minutes per group)

SecProPort: Scenario Driven Project

Demonstration and evaluation of the project:

The Security Model will be realised and evaluated by setting up Scenarios together at and with the industrial project partners.

Potential Scenarios could be:

- Container terminal: information and data exchange along the transport chain of container transport
- XXL-Logistics: Paper rolls, locomotives, wind mills, etc.
- Intermodal terminal: train-road, train-port, road-port
- Single National Window