Web application security

COINS Summer School 2019 Jingyue Li (Bill) Associate Prof. Dept. Computer Science NTNU

Goal of teaching

No more - «Penetrate & Patch»

Outline

> Typical Web app security risks and mitigations

• My studies related to Web app security

10 Most Critical Web Application Security Risks

OWASP Top 10 - 2013	₹	OWASP Top 10 - 2017
A1 – Injection	×	A1:2017-Injection
A2 – Broken Authentication and Session Management	→	A2:2017-Broken Authentication
A3 – Cross-Site Scripting (XSS)	A	A3:2017-Sensitive Data Exposure
A4 – Insecure Direct Object References [Merged+A7]	U	A4:2017-XML External Entities (XXE) [NEW]
A5 – Security Misconfiguration		A5:2017-Broken Access Control [Merged]
A6 – Sensitive Data Exposure	7	A6:2017-Security Misconfiguration
A7 – Missing Function Level Access Contr [Merged+A4]	V	A7:2017-Cross-Site Scripting (XSS)
A8 – Cross-Site Request Forgery (CSRF)	×	A8:2017-Insecure Deserialization [NEW, Community]
A9 – Using Components with Known Vulnerabilities	→	A9:2017-Using Components with Known Vulnerabilities
A10 – Unvalidated Redirects and Forwards	×	A10:2017-Insufficient Logging&Monitoring [NEW,Comm.]

Injection Attacks

Injection attacks

- SQL injection
- Blind SQL injection
- Xpath injection

Injection attack

- Malicious inputs inserted into
 - Query/Data
 - Command
- Attack string alters intended semantics
 - Query/Data
 - Command

SQL injection – normal input

Username:	Password:	Log In

"Server side login code (E.g., PHP)"

\$ result = mysql_query (" select * from Users where (name = '\$ user' and password = '\$pass'); ");

Application constructs SQL query from parameter to DB, e.g.

Select * from Users where name = user1 and password = OK123456

SQL injection – Attack scenario (1)

• Attacker types in this in *username* field

user1 ' OR 1=1); --

• At the server side, the code to be executed

\$ result = mysql_query (" select * from Users where (name = 'user1 '
OR 1=1); -- and password = 'whocares'); ");

SQL query constructed is
 Select * from Users
 Where name = user1 OR 1= 1

SQL injection – Attack scenario (2)

- If attacker types this in *username* field user1 ' OR 1=1); Drop TABLE Users; --
- SQL query constructed is Select * from Users Where name = user1 OR 1=1; Drop TABLE Users;

SQL injection Humor

Is SQL injection just a humor?

of Vulnerabilities Meeting Specified Limitations Year

Total Matches By Year

By searching key word <u>SQL injection</u> in https://nvd.nist.gov/vuln/search/statistics?form_type=Basic&results_type=statistics&query=sql+injection &search_type=all

Why so common?

What can you achieve?

- Bypass authentication
- Privilege escalation
- Stealing information
- Destruction

SQL injection countermeasures

- Blacklisting
- Whitelisting
- Escaping
- Prepared statement & bind variables
- Mitigating impact

<< All input is evil. >> Michael Howard

Blacklisting

Filter quotes, semicolons, whitespace, and ...?
 – E.g. Kill_quotes (Java) removes single quotes

```
String kill_quotes(String str) {
   StringBuffer result = new StringBuffer(str.length());
   for (int i = 0; i < str.length(); i++) {
      if (str.charAt(i) != '\'')
        result.append(str.charAt(i));
   }
   return result.toString();
}
user1'OR 1=1);--</pre>
```

Pitfalls of Blacklisting

- Could always miss a dangerous character
- May conflict with functional requirements
 - E.g. A user with name O'Brien

Whitelisting

- Only allow well-defined safe inputs
- Using RegExp (regular expressions) match string
 - E.g. *month* parameter: non-negative integer
 - RegExp: ^[0-9]+\$
 - ^ beginning of string, \$ end of string
 - [0-9] + matches a digit, + specifies 1 or more
- Pitfalls: Hard to define RegExp for all safe values

Escaping

 Could escape quotes instead of blacklisting – E.g. Escape(O'Brien) = O''Brien

INSERT INTO USERS(username, passwd) VALUES ('O''Brien', 'mypasswd')

• Pitfalls: like blacklisting, could always miss a dangerous character

Prepared statements & Bind variables

• Root cause of SQL injection attack

Data interpreted as control, e.g., user1 ' OR 1=1); --,

• Idea: decouple query statement and data input

Examples of PHP prepared statement

- Prepare the statement with placeholders
 - \$ ps = \$ db->prepare('SELECT * FROM Users WHERE name = ? and password = ?'

Bind variable; Data Placeholder

- Specify data to be filled in for the placeholders
 - \$ ps -> execute (array(\$current_username,

\$current_passwd));

Why prepared statements & bind variables work?

- Decoupling lets us compile the prepared statement before binding the "query input data"
 - Prepared statements
 - Preserve the structure of intended query
 - "Query input data" is not involved in query parsing or compiling
 - Bind variables
 - ? Placeholders guaranteed to be data (not control)

Why Prepared statements & Bind variables work (cont')?

Mitigating impact

- Prevent schema & information leakage
 - E.g. Not display detailed error message to external users
 - E.g. Not display stack traces to external users
- Limiting privileges
 - No more privileges than typical user needs
 - E.g. Read access, tables/views user can query
 - E.g. No drop table privilege for typical user

Mitigate impact (cont')

• Encrypt sensitive data, e.g.,

- Username, password, credit card number

Key management precautions
 – Do not store encryption key in DB

Session Management Attacks

Why session management?

- HTTP is stateless
- Impossible to know if Req1 and Req2 are from same client
- Users would have to constantly re-authenticate
- Session management
 - Authenticate user once
 - All subsequent requests are tied to user

Session tokens

Session management with cookie

How cookie works

• Setting and sending cookies

In header of HTTP response (Server to browser)

set-Cookie: token=**1234**; expire=Wed, 3-Aug-2016 08:00:00; path=/; domain = idi.ntnu.no

 In header of HTTP request (Browser to server, when visit the domain of the same scope)

Cookie: token=1234

- Cookie protocol problem
 - Sever only sees Cookie: NAME = VALUE
 - Server does not see which domain sends the cookie

Session management attacks and countermeasures

- Session token theft
- Session token predication attack
- Session fixation attack

Session token theft – Sniff network

- User
 - Alice logs in login.site.com (HTTPS)
 - Alice gets logged-in session token
 - Alice visits non-encrypted.site.com (HTTP)
- Attacker
 - Wait for Alice to login
 - Steal the logged-in session token (in HTTP) E.g. FireSheep (2010) sniff WiFi in wireless cafe
 - Impersonate Alice to issue request

Session token theft – Logout problem

- What should happen during logout
 - 1. Delete session token from client
 - 2. Mark session token as expired on server
 - Many web sites do (1) but not (2)!!
- Attacker
 - If can impersonate once, can impersonate for a long time
 - E.g. Twitter sad story
 - Token does not become invalid when user logs out

https://packetstormsecurity.com/files/119773/twitter-cookie.txt (2013)

Solutions to Session token theft

- Always send Session ID over encrypted channel
- Remember to log out
- Time out session ID
- Delete expired session ID
- Binding session token to client's IP or computer

Binding session token to client's IP or Computer

• Idea:

– Overcome cookie protocol problem

- Sever only sees Cookie: NAME = VALUE
- Server does not see which domain sends the cookie
- Combine IP

– Possible issue: IP address changes (Wifi / 3G)

Combine user agent: weak defense, but does not hurt

Session token predication attack

- Predicable tokens, e.g., counter
- Non-predicable token means
 - Seeing one or more token
 - Should not be able to predict other tokens
- Solution:
 - Do not invent own token generator algorithm
 - Use token generator from known framework (e.g., ASP, Tomcat, Rails)

Session fixation attack

- User
 - Visits site using anonymous token
- Attacker
 - Overwrites user's anonymous token with own token
- User:
 - Logs in and gets anonymous token elevated to logged-in token

• Attacker:

- Attacker's token gets elevated to logged-in token after user logs in
- Vulnerability: Sever elevates the anonymous token without changing the value
How to overwrite session token?

- Tampering through network
 - Alice visits non-encrypted.site.com (HTTP)
 - Attacker injects into response to overwrite secure cookie

Set-cookie: SSID=maliciousToken;

Cross-site scripting

- How?

Mitigate session fixation

 Always issue a new session token, when elevate from anonymous token to logged in token

Cross-Site Scripting (XSS) Attack

An application vulnerable to XSS

Server

An application vulnerable to XSS (cont')

Session token overwritten using XSS

Attacker

- Find out <u>http://example.com/query?</u> is vulnerable to XSS
- Get a valid anonymous token from the example.com, e.g., exampleComToken=1234
- Send this link to user

http://example.com/query?name = <script>

document.cookie = 'exampleComToken = 1234'

</script>

- Lure user to click this link
- User
 - Lured, clicks the link
 - The browser executes the script document.cookie = 'exampleComToken = 1234' Overwrite user's cookie value with attacker's cookie value, i.e., 1234

XSS exploits

- Not just cookie theft/overwritten
- Attacker injects malicious script in your page
- Browser thinks it is your legitimate script
- Typical sources of untrusted input
 - Query
 - User/profile page (first name, address, etc.)
 - Forum/message board
 - Blog
 - Etc.

Reflected vs. Stored XSS

- Reflected XSS
 - Script injected into a request
 - Reflected immediately in response
- Stored XSS
 - Script injected into a request
 - Script stored somewhere (i.e., DB) in server
 - Reflected repeatedly
 - More easily spread

XSS mitigation

- Sanitize input data
- Sanitize / escape data inserted in web page
- Escape, e.g.,
 - HTML Escape
 - < 📥 <
 - > **---->** >

Return to browser as response

XML External Entities (XXE) Attack

XML External Entities

- Also called EXTERNAL (PARSED) GENERAL ENTITY*
- They refer to data that an XML processor has to parse
- Useful for creating a common reference that can be shared between multiple documents

* http://xmlwriter.net/xml_guide/entity_declaration.shtml

XML External Entities Attack

- Against an application that parses XML input
- Untrusted XML input containing a reference to an external entity is processed by a weakly configured XML parser
- Normal input
 - Input: <test> hello</test>
 - Output after XML parsing: hello
- Malicious input
 - Input: <!DOCTYPE test [!ENTITY xxefile SYSTEM "file:///etc/passwd">]><test> &xxefile </test>
 - Output: the content of file:///etc/passwd (SENSITIVE INFORMATION DISCLOSED)

XML External Entities Countermeasure

- Disable XML external entity and DTD processing
- Input sanitization
 - Whitelisting
 - Web Application Firewalls

Insecure Deserialization Attack

Insecure Deserialization

• Serialization

Deserialization

Insecure Deserialization Attack

- SQL injection
- Server side code
 - "SELECT Grade FROM student WHERE user = '"+ student.ID +"'; "
- Attacker
 - Tamper network data and inject SQL injection payload in serialized data stream

{"ID": "'or'1'='1", "Course": "4237", "Grade": "C"}

- Developer does not sanitize serialized data. Then server will deserialize the data and use it to formulate object
 - "SELECT Grade FROM student WHERE user = 'or '1 = '1'; "

Insecure Deserialization Countermeasure

- Not to accept serialized objects from untrusted sources
- Implementing integrity checks such as digital signatures on any serialized objects
- Isolating and running code that deserializes in low privilege environments

Insufficient Logging and Monitoring

Insufficient Logging and Monitoring

- Vulnerability
 - Auditable events, such as logins, failed logins, and high-value transactions are not logged
 - Warnings and errors generate no, inadequate, or unclear log messages
 - Logs of applications and APIs are not monitored for suspicious activity
 - Logs are only stored locally
 - Appropriate alerting thresholds and response escalation processes are not in place or effective
 - Unable to detect, escalate, or alert for active attacks in real time or near real time.

Insufficient Logging and Monitoring Countermeasure

- Ensure all login, access control failures, and server-side input validation failures can be logged with sufficient user context to identify suspicious or malicious accounts, and held for sufficient time to allow delayed forensic analysis
- Establish effective monitoring and alerting such that suspicious activities are detected and responded to in a timely fashion

HTML Attacks, e.g., Clickjacking Attack

Clickjacking Attack

Attacker overlays transparent frames to trick user into clicking on a button of another page, which contains malicious behavior

Clickjacking Attack (Cont')

- C

8

Q G

MASKED IFRAME

Once the victim is surfing on the fictitious web page, he thinks that he is interacting with the visible user interface, but effectively he is performing actions on the hidden page.

HTML feature the clickjacking attacker exploits

iframe and opacity

<html> <head><title></title></head> <body>

```
<iframe id= "top" src= "<u>http://attacker wants you to click page.html</u>" width =
"1000" height = "3000">
<iframe id="bottom" src = "<u>http://attacker wants you to see page.html</u>" width =
"1000" height = "3000">
```

Transparent

<style type = "text/css"> #top {position : absolute; top: 0px; left: 0px; opacity: 0.0} #bottom {position: absolute; top:0px; left: 0px; opacity: 1.0}

</body> </html>

Defend against Clickjacking Attack

- Preventing other web pages from framing the site you want to defend (e.g., Defending with X-Frame-Options Response Headers)
- My site will not show in the frame, so that nobody can use my site to fool victim

<html>

<head><title></title></head>

If Facebook set "X-Frame-Options: deny", Facebook will not show in <iFrame>

<body>

<iframe id="bottom" src="https://www.facebook.com/" width="1000" height="3000"> <style type ="text/css">

#bottom {position: absolute; top:0px; left: 0px; opacity: 1.0}

</body>

</html>

Outline

• Typical Web app security risks and mitigations

My studies related to Web app security

Study 1

- Evaluation of open-source IDE plugins for detecting Web application security vulnerabilities
- Research questions
 - RQ1: What is the coverage?
 - RQ2: How good is the performance?
 - RQ3: How good is the usability?

The paper is published at EASE (Evaluation and Assessment of Software Engineering) conference 2019.

IDE Plugins We Evaluate

- ASIDE
- ESVD
- LAPSE+
- SpotBugs
- FindSecBugs

| ct Run window Help | | | | |
|---|--------------|------|---------------|----|
| A • O F → F B X B • B • B • B • F • • • | Quick Access | | 3 ,1 j | la |
| 🖉 XmlDecodeUtil.java 💱 | | - | | |
| <pre>1 package testcode.xmldecoder;</pre> | | | ^ | |
| 2
28 imment invo hoons XMI Decedent | | | | |
| 5 | | | | |
| <pre>6 public class XmlDecodeUtil {</pre> | | | | |
| 7
8 | | | | |
| 9 XMLDecoder d = new XMLDecoder(in); | | | | |
| 10 try { | | | | |
| <pre>11 Object result = d.readObject(); 12 return result:</pre> | | | н. | |
| 13 } | | | | |
| 14 finally { | | | | |
| 15 a.close();
16 } | | | | |
| 17 } | | | | |
| 18 | | | ~ | |
| < | | > | | |
| 😤 Problems 🕜 Javadoc 🗟 Declaration 🏶 Bug Info 😂 | * * * | 17 m | | |
| XmlDecodeUtil.java: 9 | | | | |
| Navigation | | | | |
| Vulnerable Code: | | | ~ | |
| vullerable code. | | | | |
| XMLDecoder d = new XMLDecoder(in); | | | | |
| Object result = d.readObject(); | | | | |
| | | | | |
| [] | | | | |
| | | | | |
| Solution: | | | | |
| Solution:
The solution is to avoid using XMLDecoder to parse content from an untrusted | l source. | | | |
| Solution:
The solution is to avoid using XMLDecoder to parse content from an untrusted | l source. | | ~ | |
| Solution:
The solution is to avoid using XMLDecoder to parse content from an untrusted | l source. | > | ~ | |

Vulnerable Code We Use for Evaluation

Juliet Test Suite v1.3

28,000 Test Cases

112 Security Vulnerabilities (CWE Entries)

Vulnerabilities and the test cases of the Juliet Test Suite

CWE						
ID Name						
A1 Injection	Total					
78 OS Command Injection	444					
89 SQL Injection	2220					
90 LDAP Injection	444					
113 HTTP Response Splitting	1332					
134 Use of Externally-Controlled Format String	666					
643 XPath Injection	444					
A2 Broken Authentication	Total					
256 Unprotected Storage of Credentials	37					
259 Use of Hard-coded Password	111					
321 Use of Hard-coded Cryptographic Key	37					
523 Unprotected Transport of Credentials	17					
549 Missing Password Field Masking	17					
A3 Sensitive Data Exposure						
315 Cleartext Storage of Sensitive Information in a	a Cookie 37					
319 Cleartext Transmission of Sensitive Informatio	n 370					
325 Missing Required Cryptographic Step	34					
327 Use of a Broken or Risky Cryptographic Algor	ithm 34					
328 Reversible One-Way Hash	51					
329 Not Using a Random IV with CBC Mode	17					
614 Sensitive Cookie in HTTPS Session Without '	Secure' Attribute 17					
759 Use of a One-Way Hash without a Salt	17					
760 Use of a One-Way Hash with a Predictable Sa	lt 17					
A5 Broken Access Control	Total					
23 Relative Path Traversal	444					
36 Absolute Path Traversal	444					
566 Auth. Bypass Through User-Controlled SQL I	Primary Key 37					
A6 Security Misconfiguration	Total					
395 NullPointerException Catch to Detect NULL	Pointer Deference 17					
396 Declaration of Catch for Generic Exception	34					
397 Declaration of Throws for Generic Exception	4					
A7 Cross-Site Scripting	Total					
80 Basic XSS	666					
81 Improper Neutralization of Script in an Error	Message 333					
83 Improper Neutralization of Script in Attribute	s in a Web Page 333					

Result of RQ1: Coverage

CWE	IDE-Integrated Static Analysis Tools										
ID		AS	IDE	ES	VD	LAP	SE+	Spot	Bugs	FindSe	ecBugs
A1 Injection	Total	TP	FP	TP	FP	TP	FP	ТР	FP	TP	FP
78	444	185	0	49	0	444	624	-	-	378	50
89	2220	3	3	1440	2280	2220	3060	2220	3000	1900	300
90	444	185	0	0	0	0	0	-	-	379	50
113	1332	555	795	0	0	0	0	57	0	989	0
134	666	148	212	-	-	-	-	-	-	462	0
643	444	185	265	0	0	444	1248	-	-	379	49
A2 Broken Authentication	Total	TP	FP	TP	FP	ТР	FP	TP	FP	TP	FP
256	37	-	-	-	-	-	-	-	-	-	-
259	111	-	-	-	-	-	-	15	0	48	0
321	37	-	-	-	-	-	-	-	-	16	0
523	17	-	-	-	-	-	-	-	-	-	-
549	17	-	-	-	-	-	-	-	-	-	-
A3 Sensitive Data Exposure	Total	TP	FP	TP	FP	ТР	FP	TP	FP	TP	FP
315	37	-	-	-	-	-	-	-	-	0	0
319	370	-	-	-	-	-	-	-	-	259	369
325	34	-	-	-	-	-	-	-	-	-	-
327	34	-	-	-	-	-	-	-	-	17	0
328	51	-	-	-	-	-	-	-	-	51	0
329	17	-	-	-	-	-	-	-	-	17	0
614	17	-	-	-	-	-	-	-	-	16	0
759	17	-	-	-	-	-	-	-	-	-	-
760	17	-	-	-	-	-	-	-	-	-	-
A5 Broken Access Control	Total	TP	FP	TP	FP	ТР	FP	ТР	FP	TP	FP
23	444	108	0	0	0	444	624	19	0	378	52
36	444	108	0	0	0	444	624	16	0	378	49
566	37	36	0	-	-	37	0	-	-	-	-
A6 Security Misconfiguration	Total	TP	FP	ТР	FP	ТР	FP	TP	FP	TP	FP
395	17	-	-	0	0	-	-	-	-	-	-
396	34	-	-	0	0	-	-	-	-	-	-
397	4	-	-	0	0	-	-	-	-	-	-
A7 Cross-Site Scripting	Total	TP	FP	ТР	FP	ТР	FP	TP	FP	TP	FP
80	666	642	900	28	0	666	936	19	0	666	76
81	333	321	450	14	0	0	0	19	0	333	38
83	333	108	0	14	0	333	468	19	0	333	38

Claimed vs. Confirmed Coverage

Tools	Confirmed	l Coverage	e Claimed Coverag		
ASIDE	12	41%	12	41%	
ESVD	5	17% 🔻	13	45%	
LAPSE+	8	28% 🔻	11	38%	
SpotBugs	8	28%	8	28%	
FindSecBugs	18	62% 🔻	19	66%	

Result of RQ2: Performance

	CWE		IDE-Integrated Static Analysi					nalysis Tools					
	ID		AS	IDE	ES	VD	LAP	PSE+	Spot	Bugs	FindSe	cBugs	
	A1 Injection	Total	ТР	FP	ТР	FP	ТР	FP	TP	FP	TP	FP	
	78	444	185	0	49	0	444	624	-	-	378	50	
	89	2220	3	3	1440	2280	2220	3060	2220	3000	1900	300	
	90	444	185	0	0	0	0	0	-	-	379	50	
	113	1332	555	795	0	0	0	0	57	0	989	0	
	134	666	148	212	-	-	-	-	-	-	462	0	
	643	444	185	265	0	0	444	1248	-		379	49	
	A2 Broken Authentication	Total	ТР	FP	ТР	FP	ТР	FP	TP	FP	TP	FP	
	256	37	-	-	-	-	-	-	-	-	-	-	
	259	111	-	-	-	-	-	-	15	0	48	0	
	321	37	-	-	-	-	-	-	-	-	16	0	
	523	17	-	-	-	-	-	-	-	-	-	-	
	549	17	-	-	-	-	-	-	-	-	-	-	
	A3 Sensitive Data Exposure	Total	ТР	FP	ТР	FP	ТР	FP	TP	FP	TP	FP	
	315	37	-	-	-	-	-	-	-	-	0	0	
	319	370	-	-	-	-	-	-	-	-	259	369	
	325	34	-	-	-	-	-	-	-	-	-	-	
	327	34	-	-	-	-	-	-	-	-	17	0	
	328	51	-	-	-	-	-	-	-	-	51	0	
	329	17	-	-	-	-	-	-	-	-	17	0	
	614	17	-	-	-	-	-	-	-	-	16	0	
	759	17	-	-	-	-	-	-	-	-	-	-	
	760	17	-	-	-	-	-	-	-	-	-	-	
_	A5 Broken Access Control	Total	ТР	FP	ТР	FP	ТР	FP	TP	FP	TP	FP	
	23	444	108	0	0	0	444	624	19	0	378	52	
	36	444	108	0	0	0	444	624	16	0	378	49	
	566	37	36	0	-	-	37	0	-	-	-	-	
	A6 Security Misconfiguration	Total	TP	FP	ТР	FP	TP	FP	TP	FP	TP	FP	
	395	17	-	-	0	0	-	-	-	-	-	-	
	396	34	-	-	0	0	-	-	-	-	-	-	
	397	4	-	-	0	0	-	-	-	-	-	-	
	A7 Cross-Site Scripting	Total	TP	FP	TP	FP	TP	FP	TP	FP	TP	FP	
	80	666	642	900	28	0	666	936	19	0	666	76	
	81	333	321	450	14	0	0	0	19	0	333	38	
	83	333	108	0	14	0	333	468	19	0	333	38	1

A study* at Microsoft shows that "90% of the participants are willing to accept a 5% false positive rate, while 47% of developers accept up to a 15% false positive rate." of source code analysis tools.

	ASIDE	ESVD	LAPSE+	SpotBugs	FindSecBugs
Averaged false positive rate	29%	12%	53%	7%	9%

* Maria Christakis and Christian Bird. 2016. What developers want and need from program analysis: an empirical study. InProceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering

Result of RQ3: Usability

		ASIDE	ESVD	LAPSE+	SpotBugs	FindSecBugs
	What is the problem	×	\checkmark	\checkmark	\checkmark	\checkmark
Detailed	Why is it a problem	N/A	×	×	\checkmark	\checkmark
Information	How to fix the problem	N/A	×	×	×	\checkmark
	Prioritized output	×	\checkmark	×	\checkmark	\checkmark
	Quick fixes	\checkmark	\checkmark	×	×	×
	(E)arly or (L)ate detection	E	E	L	E/L	E/L
	Can suppress warnings	\checkmark	\checkmark	×	×	×
	Eclipse Environment integration	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
,	Available on Eclipse Marketplace	×	×	×	\checkmark	×
(I)mmedia	ate or (N)egotiated interruptions	Ν	N	N	N	N
	Easily extendable	×	×	×	\checkmark	×
Po	ossible to analyze single file only	×	×	×	\checkmark	\checkmark
Possib	le to analyze single method only	x	x	x	x	x

Study 2

- Understanding and improving the opensource IDE plugins for better performance
- Research questions
 - RQ1: How is the plugin implemented?
 - RQ2: Why is the performance poor?
 - RQ3: How to improve the performance?
Study design

- Read the doc. and source code of the plugins
- For each false positive and false negative result, investigate why it happens and generate hypotheses
- Improve the code and re-test to verify the hypotheses
- Focus only on ESVD, SpotBug, and FindSecBug

How are the test cases in Juliet Test Suite structured?

• Source variant

```
/* SOURCE VARIANT: Read data using an outbound tcp connection */
socket = new Socket("host.example.org", 39544);
reader = new InputStreamReader(socket.getInputStream(), "UTF-8");
readerBuffered = new BufferedReader(reader);
data = readerBuffered.readLine();
```

```
/* SOURCE VARIANT: Read data from a file */
file = new File("C:\\data.txt");
stream = new FileInputStream(file);
reader = new InputStreamReader(stream, "UTF-8");
readerBuffered = new BufferedReader(reader);
data = readerBuffered.readLine();
```

How are the test cases in Juliet Test Suite structured (cont')?

• Control flow variant, e.g.,

Flow Variant	Condition
02	The boolean value true.
03	The equation $5==5$.
04	A private static final constant set to the boolean value true.

• Data flow variant, e.g.,

Flow Variant I	Description
31 I	Data is copied within the same method.
41 I s	Data is passed as an argument from one method to another in the same class.
42 I	Data is returned from one method to another in the same class.

Result of RQ1: How is the plugin implemented?

- ESVD: Java source code, taint analysis
- SpotBug: Bytecode, taint analysis
- FindSecBug: Bytecode, taint analysis

Result of RQ2: Why poor performance?

- Missing sources and sinks, e.g.,
 - Only HttpServletRequest.getParameter(), HttpServletRequest.geteQueryString(), and HttpServletRequest.getHeader() are in sources defined in Spotbug, which lead to its bad recall of *"HTTP Response Splitting"* vulnerability
- Inadequate algorithm for analyzing control and data flow variants

Result of RQ2: Why poor performance (cont')?

- Bad principle and design, e.g.,
 - Spotbug and ESVD report all concatenated string variables as SQL injection vulnerabilities, which leads to high false positive.
- Uncertain detections are still reported, which leads to high false positive

• We also find limitations of the Julie Test Suite

Result of RQ3: How to improve performance?

• After proof-of-concept improvements

		ESV	′D		SporBug					FindSeBu	
		Injection									
		Rec.	Prec.	Disc.	Rec.	Prec.	Disc.	Rec.	Prec.	Disc.	
CWE-78 OS Cmd Inj.	RQ2	11%	100%	11%	0%	0%	0%	86%	86%	72%	
	RQ3	19%	100%	19%	0%	0%	0%	89 %	100%	86%	
CWE-89 SQL Inj.	RQ2	65%	39%	0%	100%	43%	0%	86%	86%	72%	
	RQ3	22%	100%	22%	84%	70%	49%	89 %	100%	86%	
CWE-90 LDAP Inj.	RQ2	0%	0%	0%	0%	0%	0%	86%	86%	72%	
	RQ3	19%	100%	19%	0%	0%	0%	89%	100%	86%	
CWE-113 HTTP R.S.	RQ2	0%	0%	0%	4%	100%	4%	74%	100%	74%	
	RQ3	19%	100%	19%	47%	100%	47%	89%	100%	86%	
CWE-643 XPath Inj.	RQ2	0%	0%	0%	0%	0%	0%	86%	86%	72%	
	RQ3	0%	0%	0%	0%	0%	0%	89%	100%	86%	

Result of RQ3: How to improve performance (cont')?

SporBug

• After proof-of-concept improvements

ESVD

								\backslash			
Broken Access Control - Path Traversal											
		Rec.	Prec.	Disc.	Rec.	Prec.	Disc.	Rec.	Prec.	Disc.	
CWE-23	RQ2	11%	100%	11%	4%	100%	4%	86%	86%	72%	
Rel. Path T.	RQ3	19%	100%	19%	47%	100%	47%	100%	88%	86%	
CWE-36 Abs. Path T.	RQ2	11%	100%	11%	4%	100%	4%	86%	86%	72%	
	RQ3	19%	100%	19%	40%	100%	40%	100%	88%	86%	
Cross-Site Scripting											
		Rec.	Prec.	Disc.	Rec.	Prec.	Disc.	Rec.	Prec.	Disc.	
CWE-80 Basic XSS	RQ2	11%	100%	11%	3%	100%	3%	100%	88%	86%	
	RQ3	19%	100%	19%	46%	100%	46%	89%	100%	86%	
CWE-81 XSS Error	RQ2	11%	100%	11%	6%	100%	6%	100%	88%	86%	
	RQ3	19%	100%	19%	46%	100%	46%	89%	100%	86%	
CWE-83 XSS Attrib.	RQ2	11%	100%	11%	6%	100%	6%	100%	88%	86%	
	RQ3	19%	100%	19%	46%	100%	46%	89%	100%	86%	

FindSeBug

Summary

Many Web app vulnerabilities are about details

• Developers need to understand the risks and to develop secure code from the first place

Tools to help developers are not perfect and need improvements