

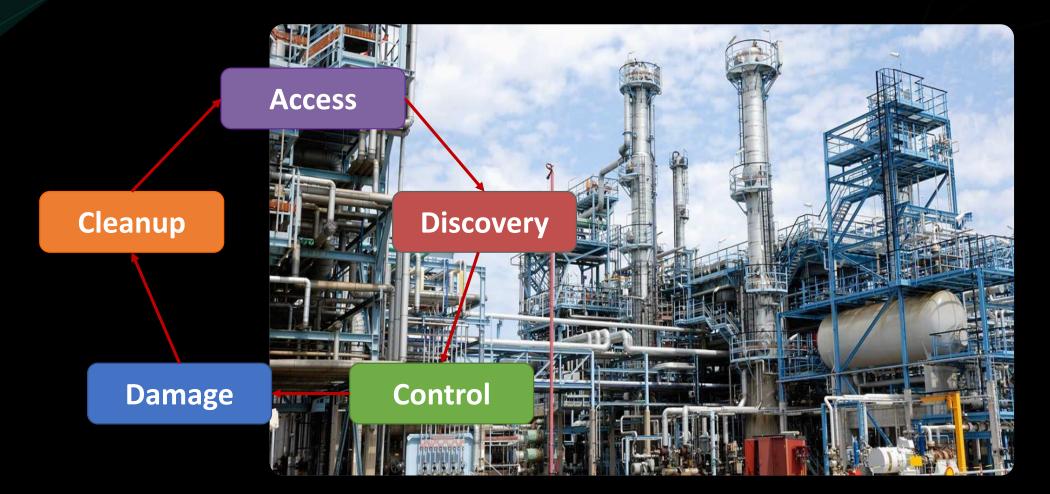
Marina Krotofil

COINS summer school on Security Applications, Lesbos, Greece 26-27.07.2019

This session is based on the talk:

M. Krotofil, A.D "Hack Like a Movie Star: Step-by-step guide to crafting SCADA payloads for physical attacks with catastrophic consequences", Zeronights, Moscow, Russia, 2015.

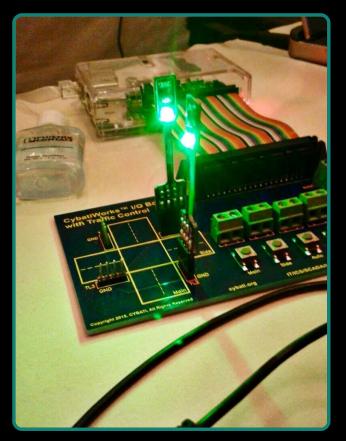
Movies are inspiring....

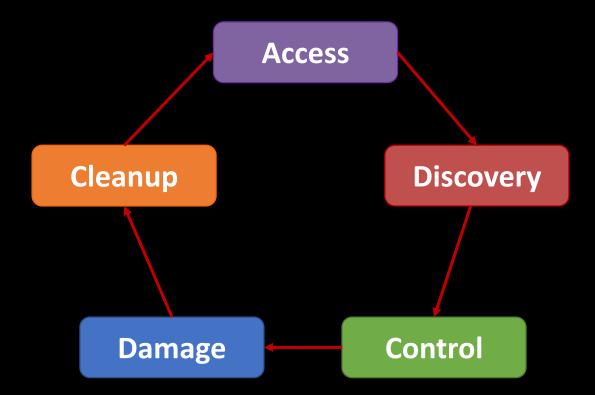


Prehistory or Why this talk

Prehistory: Hacking chemical plants

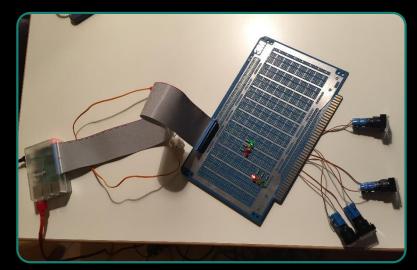
M. Krotofil. Hacking Chemical Plants for Competition and Extortion. Black Hat USA (2015) J. Larsen. Breakage. Black Hat Federal (2007)


At DefCon ICS village



- Several types of control systems (traffic lights, robots, power grid) available for hacking
- Many hacking master minds
- Applied techniques they use to hack IT systems
 - Nmap-ing & traffic analysis
 - Firing vulnerabilities scanners to get shell
 - <u>No success & lost interest</u>

Cyber-physical attack lifecycle will help you!

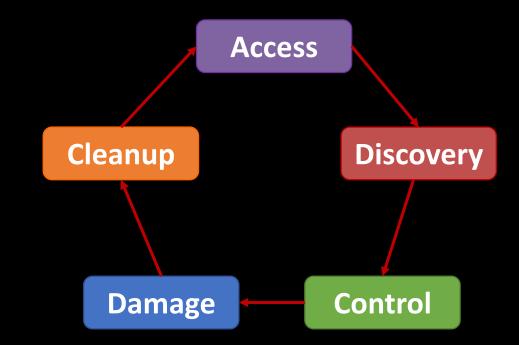

www.zeronights.org

CybatiWorks Traffic Light kit

Semi-handcrafted demo tool

- Legally obtained image from the Internet
- Own hardware components
- Permission for full disclosure
 - Thanksgiving: Matthew Luallen of Cybati

Our first testbed (minimal physical model to get started, but full-blown control system)

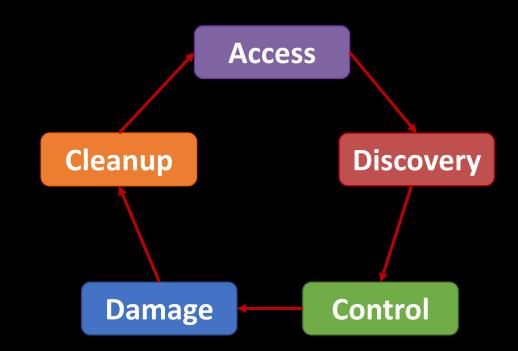


Project kick-off meeting :-)

Somewhere out there in the world there is a lonely traffic light system. How do you connect to it?

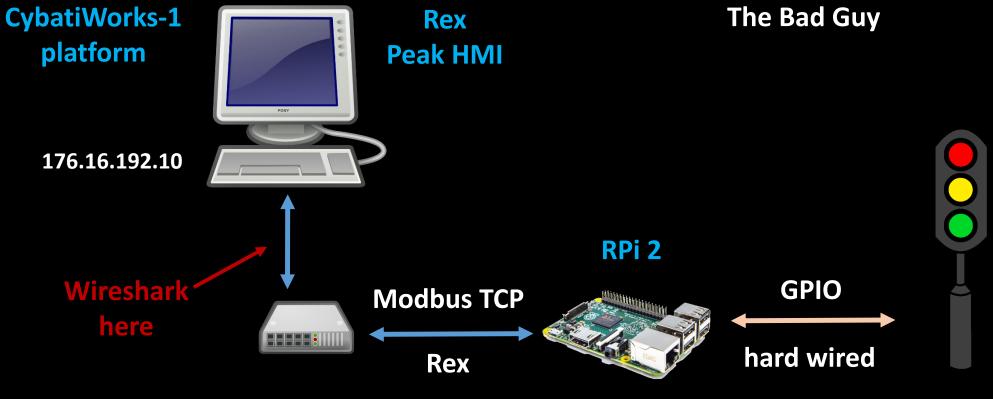


In our case the system is just in front of us

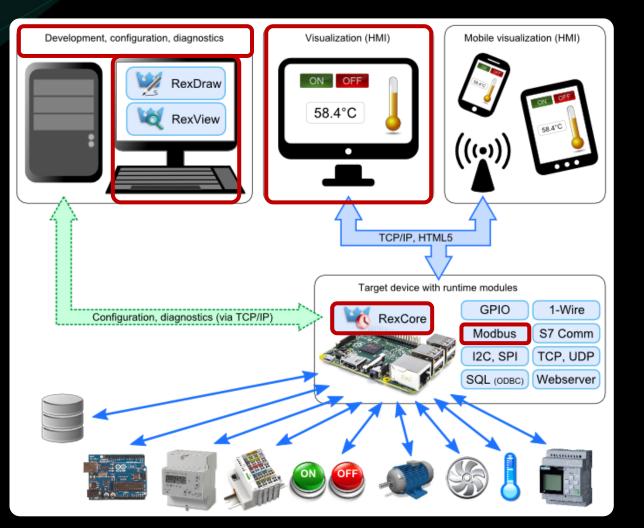

That was hard!

www.zeronights.org

Discovery



American traffic-light-controlled crossroad



176.16.192.30

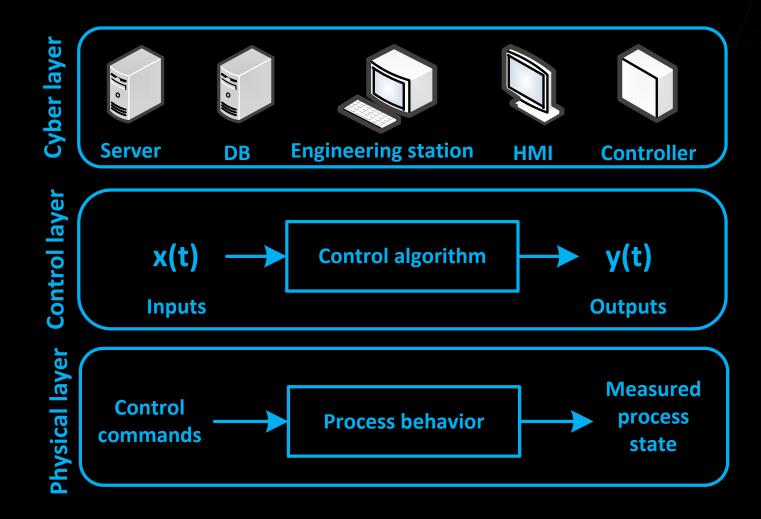
ZERO MIGHTS

Rex control system

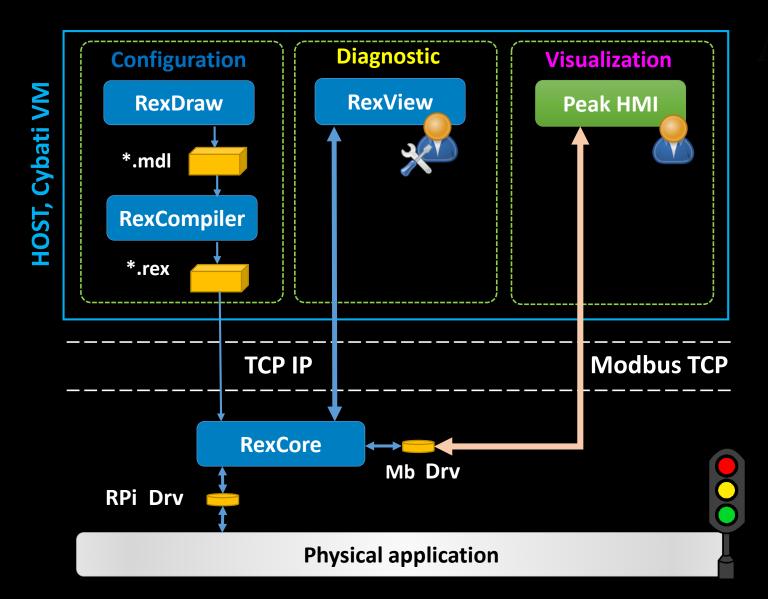
- REX Control System is a family of software products for automation projects
- RexDraw development tool for creation of control programs
- RexView diagnostic tool, allows watching the runtime core execution of control algorithm
- RexCore run time environment handles timing and execution of control algorithms

https://www.rexcontrols.com/rex-control-system-raspberry-pi

Cyber-physical system


IT systems "embedded" in an application in the physical world
 Cyber-physic al attacks has
 The goal of the attacker

- Bring system into a specific state
- To make system performing desired actions


Layers of cyber-physical system

www.zeronights.org

Control and monitoring architecture

Understanding the network and the traffic

- Rex communication protocol
- Proprietary, reverse engineerable
 Modbus TCP
 - Open source
 - No [authentication, integrity protection, encryption]

ZERONGHTS

Understanding the traffic

	243 19.53770100(172.16.192	2.10 172.16.192.30	Modbus/TCP	78	Query: Trans:	0; Unit:	1, Func:	3: Read Holding Registers
± Fr	ame 243: 78 bytes on wire	(624 bits), 78 bytes capt	ured (624 bits) on inte	rface O				
🗄 Et	hernet II, Src: Vmware_b4:	:34:14 (00:0c:29:b4:34:14)	, Dst: Raspberr_95:7b:a	c (b8:27:el	:95:7b:ac)			
± In	ternet Protocol Version 4,	, Src: 172.16.192.10 (172.	16.192.10), Dst: 172.16	.192.30 (1	72.16.192.30)			
⊞ Tr	ansmission Control Protoco	ol, Src Port: 54034 (54034), Dst Port: asa-appl-p	roto (502)	, Seq: 949, Ad	ck: 1544, Len:	12	
E Mo	dbus/TCP							
	Transaction Identifier: 0)						
	Protocol Identifier: O							
	Length: 6							
	Unit Identifier: l							
E Mo	dbus							
	Function Code: Read Holdi	ng Registers (3)						
	Reference Number: 2048							
	Word Count: 6							
0000	b8 27 eb 95 7b ac 00 0c	29 b4 34 14 08 00 45 00	.'{).4E.					
0010		24 b8 ac 10 c0 0a ac 10	.@=.@.@. \$					
0020 0030		84 08 a9 b8 fe bd 80 18 08 0a 00 05 70 f2 00 00	p					
0040	82 1b 00 00 00 00 00 06	01 03 08 00 00 06	·····					

Understanding the traffic

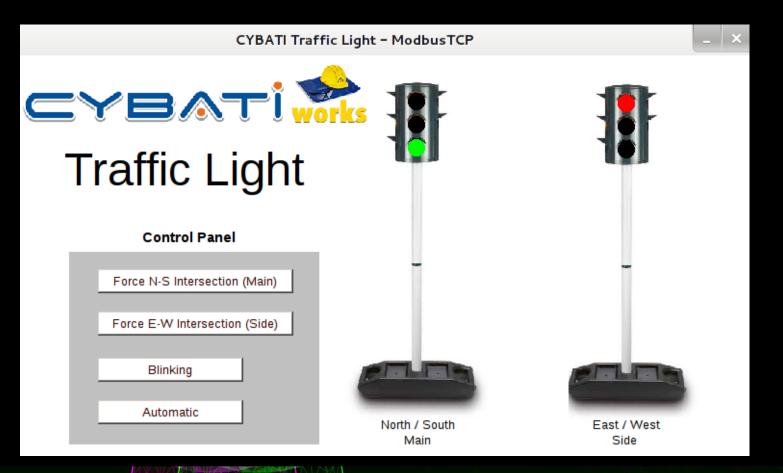
	ding Registers ding Registers
 Frame 245: 87 bytes on wire (696 bits), 87 bytes captured (696 bits) on interface 0 Ethernet II, Src: Raspberr_95:7b:ac (b8:27:eb:95:7b:ac), Dst: Vmware_b4:34:14 (00:0c:29:b4:34:14) Internet Protocol Version 4, Src: 172.16.192.30 (172.16.192.30), Dst: 172.16.192.10 (172.16.192.10) Transmission Control Protocol, Src Port: asa-appl-proto (502), Dst Port: 54034 (54034), Seq: 1544, Ack: 961, Len: 21 Modbus/TCP Transaction Identifier: 0 Protocol Identifier: 0 Length: 15 Unit Identifier: 1 	ding Registers
 Ethernet II, Src: Raspberr_95:7b:ac (b8:27:eb:95:7b:ac), Dst: Vmware_b4:34:14 (00:0c:29:b4:34:14) Internet Protocol Version 4, Src: 172.16.192.30 (172.16.192.30), Dst: 172.16.192.10 (172.16.192.10) Transmission Control Protocol, Src Port: asa-appl-proto (502), Dst Port: 54034 (54034), Seq: 1544, Ack: 961, Len: 21 Modbus/TCP Transaction Identifier: 0 Protocol Identifier: 0 Length: 15 Unit Identifier: 1 	
 Internet Protocol Version 4, Src: 172.16.192.30 (172.16.192.30), Dst: 172.16.192.10 (172.16.192.10) Transmission Control Protocol, Src Port: asa-appl-proto (502), Dst Port: 54034 (54034), Seq: 1544, Ack: 961, Len: 21 Modbus/TCP Transaction Identifier: 0 <pre>Protocol Identifier: 0 Length: 15 Unit Identifier: 1</pre> 	
 Internet Protocol Version 4, Src: 172.16.192.30 (172.16.192.30), Dst: 172.16.192.10 (172.16.192.10) Transmission Control Protocol, Src Port: asa-appl-proto (502), Dst Port: 54034 (54034), Seq: 1544, Ack: 961, Len: 21 Modbus/TCP Transaction Identifier: 0 <pre>Protocol Identifier: 0 Length: 15 Unit Identifier: 1</pre> 	
 Transmission Control Protocol, Src Port: asa-appl-proto (502), Dst Port: 54034 (54034), Seq: 1544, Ack: 961, Len: 21 Modbus/TCP Transaction Identifier: 0 Protocol Identifier: 0 Length: 15 Unit Identifier: 1 	
Modbus/TCP Transaction Identifier: 0 Protocol Identifier: 0 Length: 15 Unit Identifier: 1	
Transaction Identifier: 0 Protocol Identifier: 0 Length: 15 Unit Identifier: 1	
Protocol Identifier: 0 Length: 15 Unit Identifier: 1	
Length: 15 Unit Identifier: 1	
Unit Identifier: 1	
Function Code: Read Holding Registers (3)	
Byte Count: 12	
Register 0 (UINT16): 1	
Register 1 (UINT16): 0	
Register 2 (UINT16): 0	
Register 3 (UINT16): 1	
Register 4 (UINT16): 0	
Register 5 (UINT16): 0	
0000 00 0c 29 b4 34 14 b8 27 eb 95 7b ac 08 00 45 00).4'{E. 0010 00 49 85 4a 40 00 40 06 dd la ac 10 c0 le ac 10 .I.J@.@	
0020 c0 0a 01 f6 d3 12 a9 b8 fe bd 85 ec 84 14 80 18	
0030 01 c5 12 d3 00 00 01 01 08 0a 00 00 82 34 00 054 0040 70 f2 00 00 00 00 0f 01 03 0c 00 01 00 00 00 p	
0040 70 f2 00 00 00 00 00 0f 01 03 0c 00 01 00 00 00 p 0050 00 00 01 00 00 00 00	

ZERONIGHTS

Understanding the traffic

2	40 19.30623800(172.16.192.10	172.16.192.30	Modbus/TCP	78 Query: Trans:	65; Unit: 1, Fun	nc: 6: Write Single Register
2	42 19.53695800(172.16.192.30	172.16.192.10	Modbus/TCP	78 Response: Trans:	65; Unit: 1, Fun	nc: 6: Write Single Register
± Fra	ame 242: 78 bytes on wire (624 bits),	78 bytes captured (6	24 bits) on interfa	ace O		
🗄 Et	nernet II, Src: Raspberr_95:7b:ac (b8	:27:eb:95:7b:ac), Dst	: Vmware_b4:34:14 ((00:0c:29:b4:34:14)		
∃ In	ternet Protocol Version 4, Src: 172.10	5.192.30 (172.16.192.)	30), Dst: 172.16.19	92.10 (172.16.192.10)		
🗄 Tra	ansmission Control Protocol, Src Port	: asa-appl-proto (502), Dst Port: 54034	(54034), Seq: 1532, Ad	ck: 949, Len: 12	
- Moo	bus/TCP			•		
- Ma	Transaction Identifier: 65 Protocol Identifier: 0 Length: 6 Unit Identifier: 1 Houe Function Code: Write Single Register Reference Number: 2 Data: 0000	(6)				
0000	00 0c 29 b4 34 14 b8 27 eb 95 7b ac	08 00 45 00).4.	.'{E.			
0010			@%			
0020	c0 0a 01 f6 d3 12 a9 b8 fe b1 85 ec	84 08 80 18				
0030						
0040	70 b8 00 41 00 00 00 06 01 06 00 02	00 00 pA				

Understanding points and tags


Everything what could be measured (inputs) and set (outputs) is called a point

- Points have tags (variable name)
- You need to reconstruct point-tag nomenclature
- Points come in analog, digital, and integer flavors
- Points can be read, write, or read/write
- Often multiple conversion based on tables stored somewhere on the servers or Internet
 - Go find them

HMI for traffic light management

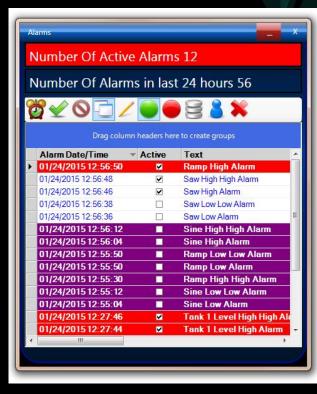
No authentication and access control

ZERO NGHTS

Look around HMI

	Tagname sel	ection	>
	Filter		
lagname	Туре	Port	Source
AUTO_STATE	Digital	RASPI	400005/16
UTOMATIC_RASPI	Digital	RASPI	400003/16
DISABLE_RASPI	Digital	RASPI	400004/16
GREEN_1_RASPI	Digital	RASPI	402051/16
GREEN_2_RASPI	Digital	RASPI	402054/16
MAIN_ROAD_RASPI	Digital	RASPI	400002/16
RED_1_RASPI	Digital	RASPI	402049/16
RED_2_RASPI	Digital	RASPI	402052/16
SIDE_ROAD_RASPI	Digital	RASPI	400001/16
/ELLOW_1_RASPI	Digital	RASPI	402050/16
ELLOW_2_RASPI	Digital	RASPI	402053/16

11				
н	C	ar	١Ċ	e


ОК

	Point monitor[RED_2	2_RASPI]	_ 🗆 ×
Description		Value	ID #
EU Units			100
Item Description	n		101
Item Timezone	2	0	108
Process Variab	le Digital	False	5007
Alarm Falling A	Active	False	5005
Alarm Rising A	ctive	False	5006
Alarm Falling S	State	Alarms not	5014
Alarm Rising S	tate	enabled (?)	5015
Contact Close	Label		106
Contact Open	Label	•	107
Alarm Falling B	nabled	False	5024
Alarm Rising E	nabled	False	5025
Alarm Group		0	5026
Alarm Falling F	Print	0	5031
Alarm Rising P	rint	0	5032
Alarm Falling (Condition Status		5052
Alarm Falling B	Exceeded Text		5053
Alarm Falling (Condition Logic		E0E4
Print	RED_2_RA		ОК

Alarm is (min/max) threshold/warning of a point value or process/system condition

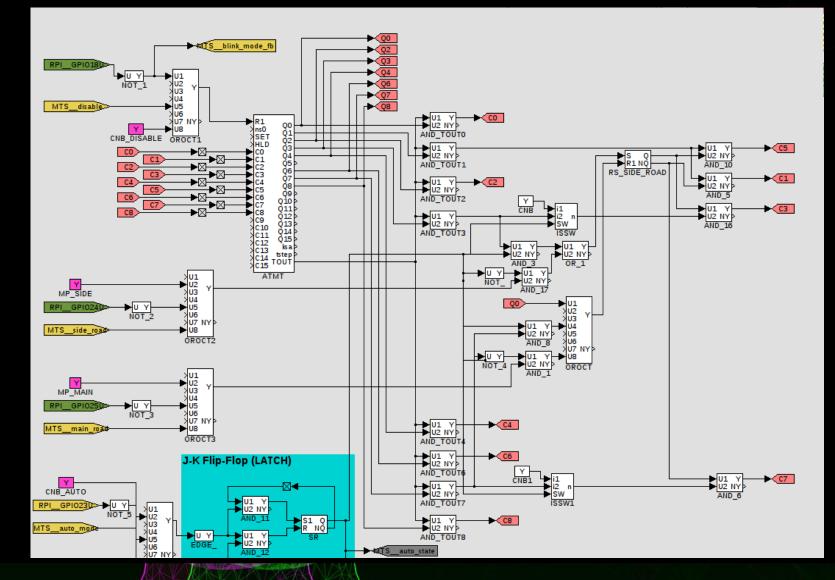
- Warns operator about unwanted/dangerous conditions/events
- They tell you what process creator was worried about
 Alarm can be generated
 - In controller
 - In data base
 - On the HMI
- The attacker may need to suppress alarms during the attack

(Illustrative alarms)

	Ρ	oint monitor[RED_2_	RASPI]	-		×
Description			Value	ID	#	
EU Units				10	0	
		Alarm log viewing			- 1	• >
ime	Tag <mark>.</mark> .	une condition		Value		

Empty alarm log -> looks like really no alarms configured, good for us :-)

Select	Print	Export	Automatic scro	ОК
Print		RED_	2_RASPI	OK


ZERONGHTS

Sorting out your discoveries

Modbus Tag	Modbus Address	Modicon Address	Flags	Description
side_road	0	40001	RW	HMI Button, goto State "side"
main_road	1	40002	RW	HMI Button, goto State "main"
disable	2	40003	RW	HMI Button, goto State "blinking"
auto_state	3	40004	RW	HMI Button, goto "automatic mode"
main_red	2048	42049	R	state of a single traffic light
main_yellow	2049	42050	R	state of a single traffic light
main_green	2050	42051	R	state of a single traffic light
side_red	2051	42052	R	state of a single traffic light
side_yellow	2052	42053	R	state of a single traffic light
side_green	2053	42054	R	state of a single traffic light
auto_mode_fb	2054	42055	R	Unused
blink_mode_fb	2055	42056	R	Stores current "blinking" state

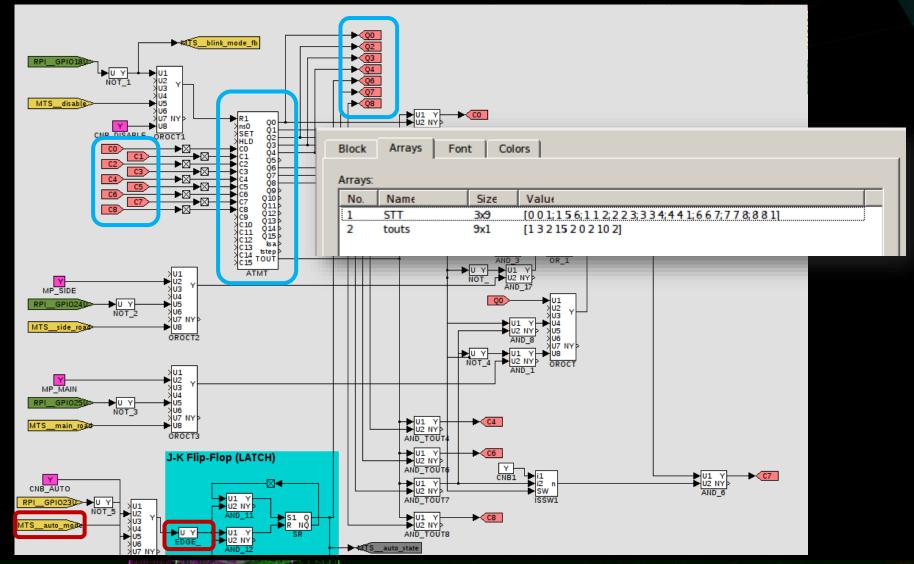
Control logic

www.zeronights.org

Defines what should/should not happen

- Under which conditions
- At what time
- YES or NO proposition
- □ If-then statements and Boolean logic
 - [if input 1 true] AND [input 2 not true] -> [do something]

Where/how to get it?

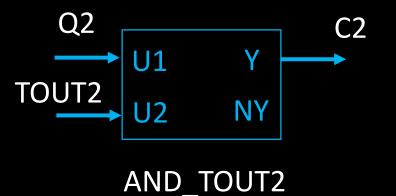

Engineering/programming station

- Some engineer has programmed it
- Some human has uploaded it
- Often stored on some server
- Go grab it from the controller
 - Reverse engineer the compiler
 - E.g. see talk of Felix 'FX' Lindner talk on building custom disassemblers

http://data.proidea.org.pl/confidence/9edycja/materialy/prezentacje/FX.pdf

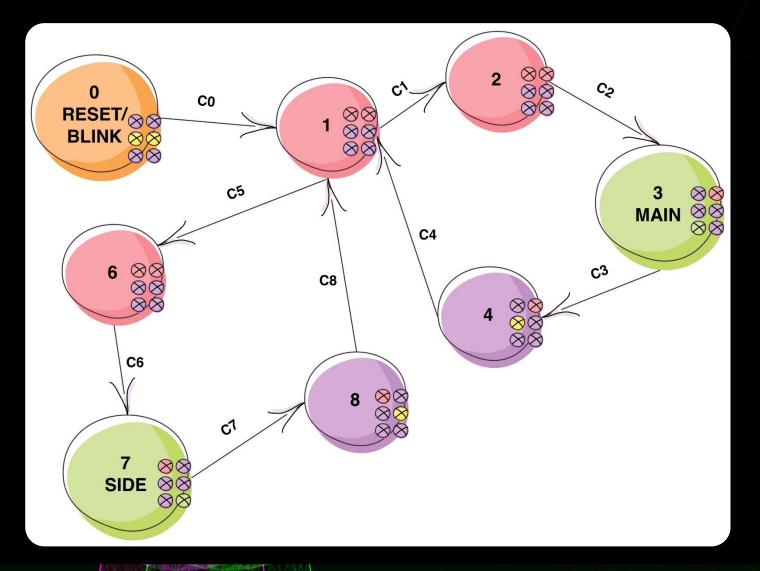
Control algorithm

www.zeronights.org

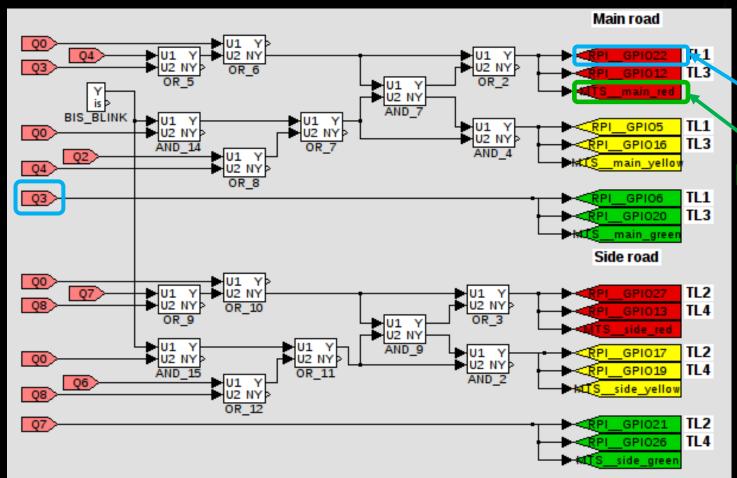

Control logic (schematics)

Block	Arrays For	nt Colo	ors	
Arrays:				
No.	Name	Size	Value	
1		3x9	Value [0 0 1; 1 5 6; 1 1 2; 2 2 3; 3 3 4; 4 4 1; 6 6 7; 7 7 8; 8 8 1]	_
1	STT	3x9	[0 0 1; 1 5 6; 1 1 2; 2 2 3; 3 3 4; 4 4 1; 6 6 7; 7 7 8; 8 8 1]	-

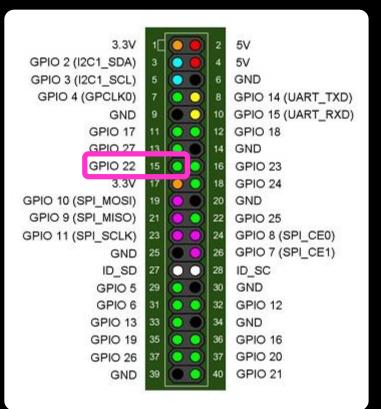
STT – State Transition Tabletouts – timeouts, time limit for current state


[0 0 1;1 5 6;1 1 2; 2 2 3.....7 7 8; 8 8 1]

Current state Condition to move to the next state State the system will transit


State machine

www.zeronights.org

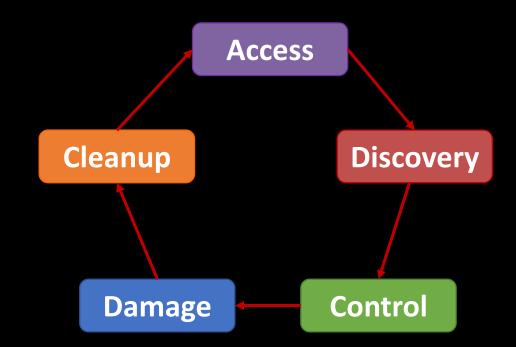

Physical outputs of the states

Tags, pins, Modbus labels

ZERO NIGHTS

Mapping tags and pins

	+	i ~ \$ gpio +			+Pi	. 2		+	+	+	+
BCM	wPi	Name	Mode	V	Phys	ical	V	Mode	Name	wPi	BCM
		3.3v				2			5v		
2	8	SDA.1	IN	1	3	4	Ì		5V		
3	9	SCL.1	IN	1	5	6			0v		ĺ
4	/ 7	GPIO. 7	E IN	1	7	8	1	ALT0	TxD	15	14
		Θv			9	10	1	ALTO	RxD	16	15
17	0	GPIO. O	OUT	0	11	12	1	IN	GPIO. 1	j 1	18
27	2	GPTO 2	i out	i 1	i 13 i	14			Θv		
22	3	GPIO. 3	OUT	0	15 j	16	j 1	IN	GPIO. 4	4	23
		J.3V			1/	j 18	1	IN	GPIO. 5	j 5	24
10	12	MOSI	IN IN	0	19	20	Ĭ.		Θv	İ	İ
9	13	MISO	Í IN	0	21	22	1	IN	GPIO. 6	6	25
11	14	SCLK	Í IN	0	23	24	0	IN	CEO	10	8
		Θv			25	26	i O	IN	CE1	11	7
0	30	SDA.0	IN	1	27	28	1	IN	SCL.0	31	1
5	21	GPI0.21	i out	0	29	30	İ.		Θv		i
6	22	GPI0.22	OUT	1	31	32	0	OUT	GPI0.26	26	12
13	23	GPI0.23	OUT	1	33	34	8		Θv	1	
19	24	GPI0.24	OUT	Θ	35	36	0	OUT	GPI0.27	27	16
26	25	GPI0.25	OUT	0	37	38	i 1	OUT	GPI0.28	28	20
		Θv			39	40	j o	OUT	GPI0.29	29	21
BCM	+ wPi	+ Name	+ Mode	+ V	++ Phys	+	+ V	Mode	Name	+ wPi	BCN


Outcome of the discovery stage

Understanding how the systems is built and functions

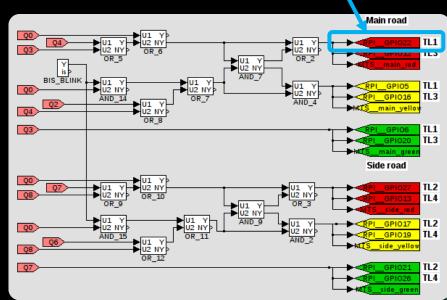
• Static discovery of the system

Control

Things which we can change

There are two major things the attacker can control

- The state of the traffic light (red-yellow-green & blinking)
- The timeout of each state
- The state of the traffic light can be controlled
 - Directly
 - Indirectly (by manipulating the inputs to control logic)
- We brainstormed a list of 30 approaches
 - Implemented half of it (at the end it is just a hacking exercise for fun & more fun)

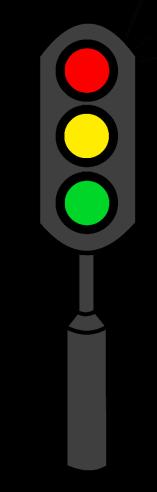

Forcing the point

Setting point value from the debagger (RexView)

 "Set that on green because I am your engineer and I said so!"

Setting point from the microcontroller (RPi)

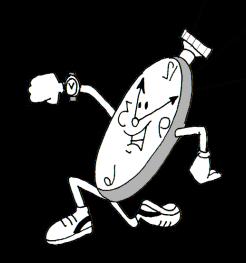
- Using *suid binary*
- Does not require root privileges (enjoy!)



gpio write 31

Stale Data attack

- Stopping CPU on command
- Traffic lights will remains in their last state
- ssh pi@172.16.192.30
 sudo su
 ps -ax |grep Rex
 find out the pid of RexCore
 kill -STOP [pid]
 kill -CONT [pid]
 (repeat 4 and 5 at will)



P.S. We achieved the same effect by clumsily uploading modified firmware – unintended fuzzing \odot

ZERO MCHIS DEMO 3

Speeding up the clock

- Modifying timer tick
- Making things happening faster

- 1. ssh pi@172.16.192.30
- 2. sudo su
- 3. ps -ax | grep RexCore
- find out the pid of RexCore
- 4. gdb -[pid]
- 5. info files

find address ranges for .data in /usr/lib/libRex_T-2.10.6.so

use start address XXX in the following formula 6. x/x XXX - 0x98bc8 + 0x9a1d4

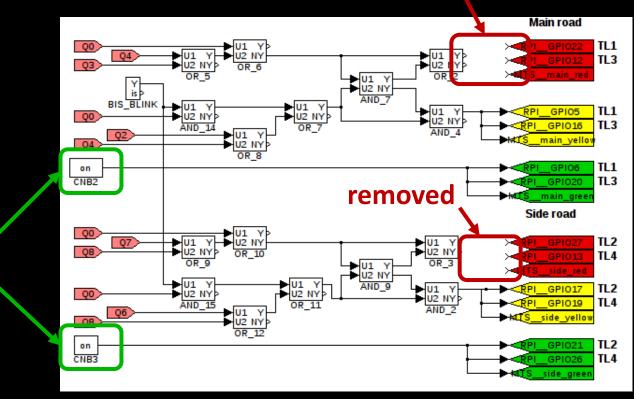
you should get a new offset with location of the timer tick
0xXXX: 0x02af080
use XXX in the following formula
7. set *(int)0xXXX=1000

(50000 speed factor) modify touts as needed

8. [11300111111111]

ZERONIGHTS

Reverse engineering RexCore


IDA - E:\RexProjects\rexlib\Pi\usr\lib\libRex_T-2.10.6.so											- 0	×
File Edit Jump Search View Debugger Options Window	Help											
📸 🔚 🗢 🕶 🕶 🖬 🆓 🆓 🗛 🕨	i 📾 🗗 🖈 🖈 🚄 🗙 🕨 🛛 🕻	No debugger	• 🐿 🛃 🗊 🕈 🏹									
Functions window	🖪 IDA View-A 🛛	🖸 Hex View-1 🛛 🛛	Structures		Enums	× 1	Imports		Exports	×		
Function name Segi init_proc init DCmdInterpreter::IntpSetValue(void) .ptt OSMutes:::OSMutes(ini) .ptt DFileStream::GetOpenFileSize(void) .ptt XIODrive::InitOSTask(void) .ptt ZShort2AnyVar(XAV*,short) .ptt DCmdInterpreter::IntpGetIODrvCfg(void) .ptt J.j.valuong .ptt J.j.valuong .ptt StringToDate(.OSDT*,char const*) .ptt DBlockWS::FreeWSNames(void) .ptt StringToDate(.OSDT*,char const*) .ptt DCmdInterpreter::IntpGetArray(void) .ptt XExecutive::MarKSwapExces(void) .ptt ZKaecutive::MarKSwapExces(void) .ptt ZKaecutive::MarKSwapExces(void) .ptt DCmdInterpreter::IntpGetLicCode(void) .ptt ZKaecutive::MarKSwapExces(void) .ptt	100.00% (464,441) (379,378) 00066	6A4 000666A4: sub_662E0+3C4	LDR LDR LDR TST BEQ LDR R3, =C LDR R3, =C LDR R1, =C ADD R3, PC HNU R8 HJ ADD R1, PC LDR R2, [S LDR R3, FR BL]200 B loc_66	BL clock of CMP R0, #0 BEQ loc_66 66680	intFlags_ptr - ; g_dwPrintFlag; • 0x666AC) D0 ged int ER resolution % sec] • 0x9A1D0)] • 1041D0 - 0x6636 ; g_wXTimerRunn 19A1D0 - 0x6636 ; g_wXTimerRunn	<pre></pre>	 	adla	Ravn	to Ole ås for frida.re	Frida e)	a
Output window											-	1 # x 💾

□ Modification of control logic

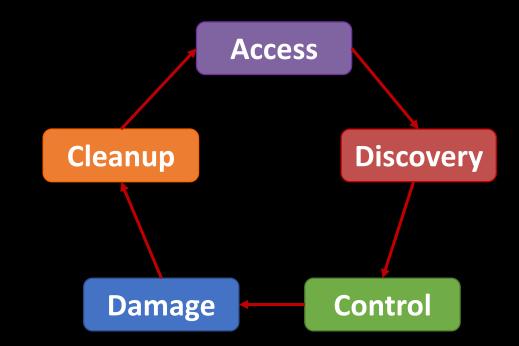
- Rewire/redesign the logic in a way you want
- E.g. No-REDs-Allowed!

removed

constant ON

□ Modification of control logic

- Rewire/redesign the logic in a way you want
- E.g. **No-REDs-Allowed!**


Outcome of the control stage

□ A portfolio of attacks instances to include into final payload

- All various ways you can influence the state of the physical application
- Choose which you want to use in final payload
 - Those which are more reliable and most effective

Damage

□ Safety related (very catastrophic)

- Damage to the vehicles
- Killing road users (drivers, pedestrians, cyclists...)
- o Both

Economy related (very inconvenient)

- Denial of traffic light service
- Maintenance efforts
- Traffic impairment
- □ Force amplifier (very unfortunate)
 - Making a way for **bad guys**
 - Denying a way for **good guys** (ambulance, police)

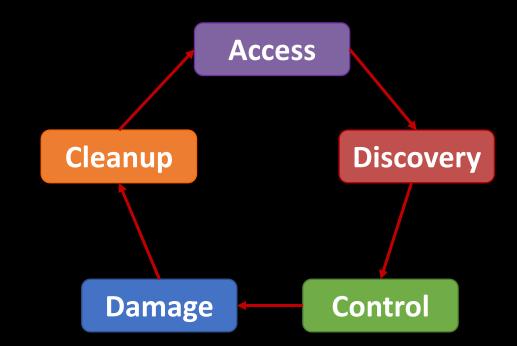
Traffic jams and gridlocks

Paris amore.....

Designing attack scenario

□ Final payload is tailored to the system you are attacking

- Requires knowledge of traffic light system solution, (cross)road layout, traffic patterns, driving culture, etc.
- E.g. in India nobody follows traffic lights, traffic lights in many U.S. cities are desynchronized anyway and "Germans don't need traffic lights" https://www.youtube.com/watch?v=zv9FQZ7kggU

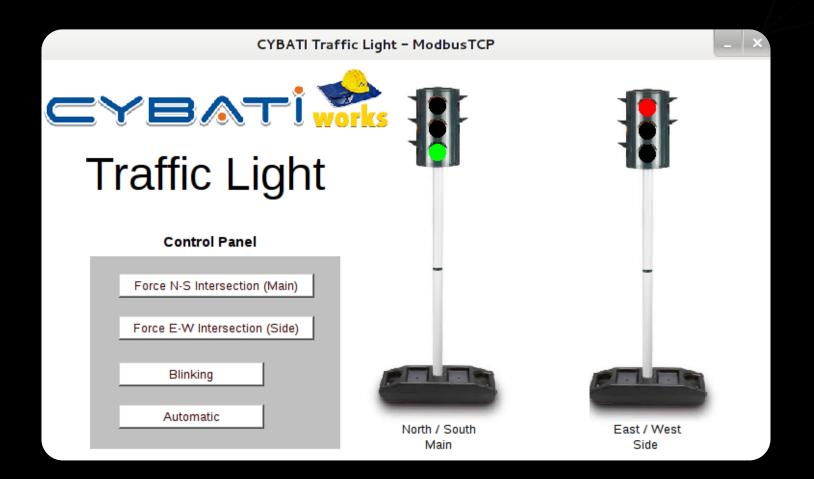

Traffic light hack in Los Angeles in 2006

ZER

- Disgruntled city traffic engineers reprogrammed lights to stay red longer
- Used their comprehensive knowledge of the city's traffic patterns and chose few key intersections
- Caused a massive traffic bottleneck and several days of gridlock

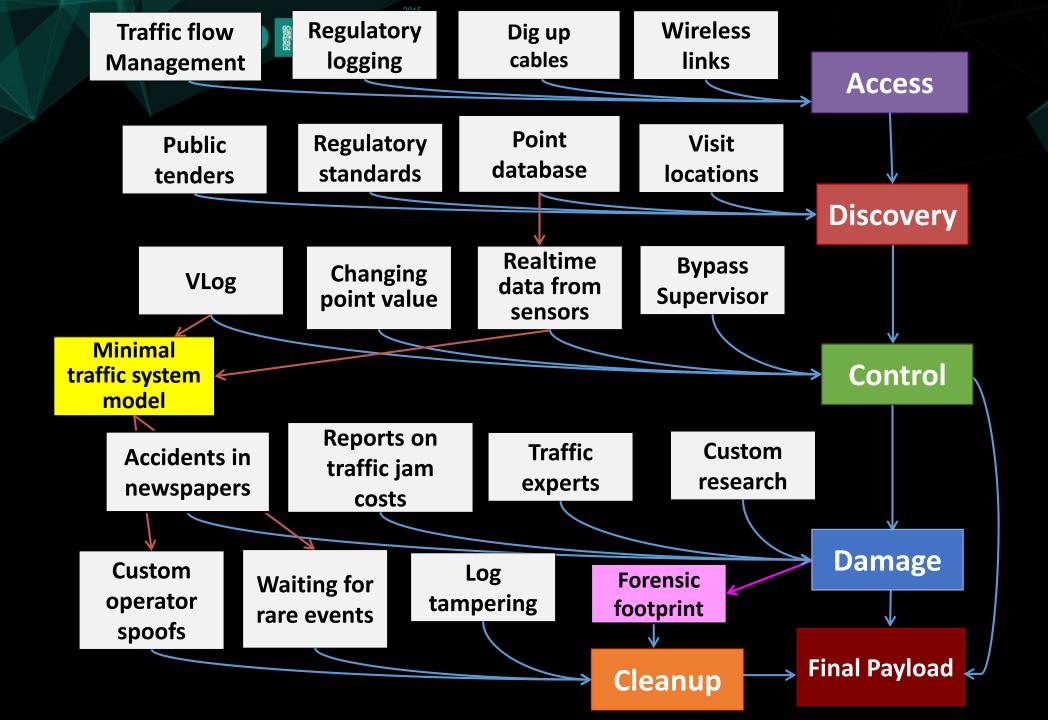
Cleanup

Cyber-physical attacks


Cyber-physical attacks change things in the physical world

- The impact of such attacks cannot be made **invisible** by smart "stealth techniques" or by modifying logs
- Because it is NOT INVISIBLE, somebody responsible will try to intervene if things are not going right
- Make those people unaware of true system's state

Traffic light HMI


Blinding operator about real state of the traffic lights

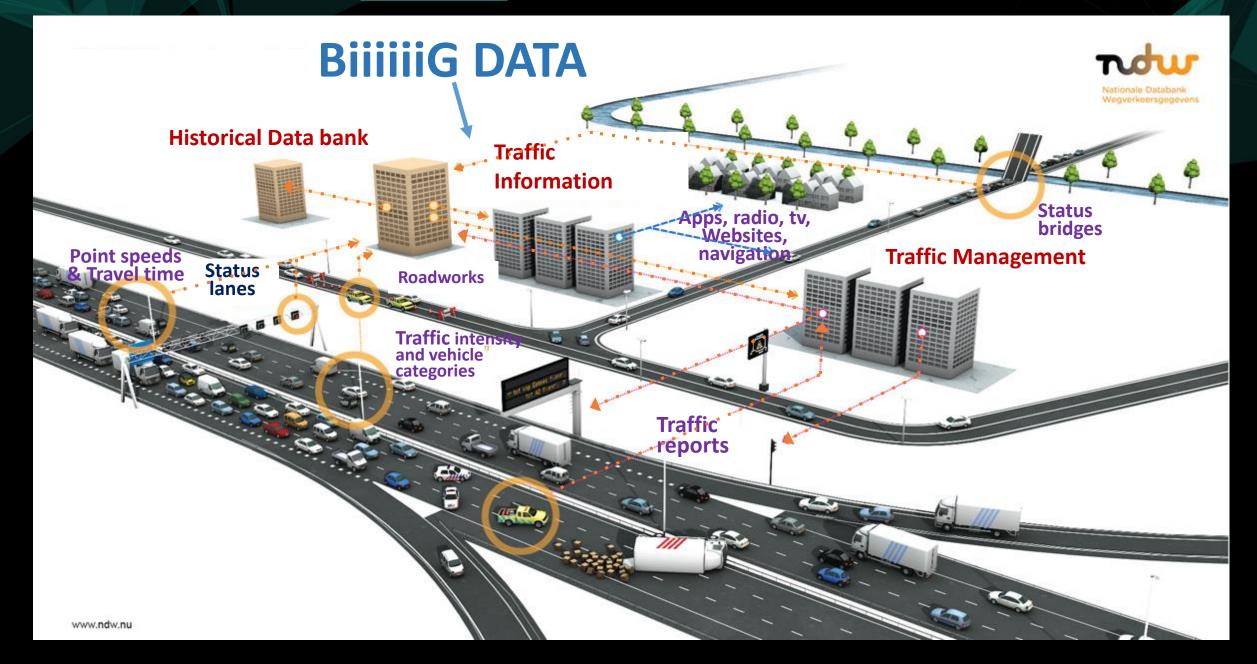
- Requires some form of MITM
- Can be implemented at the network layer, on the HMI host, DB, etc.

Intercepting traffic to the operator

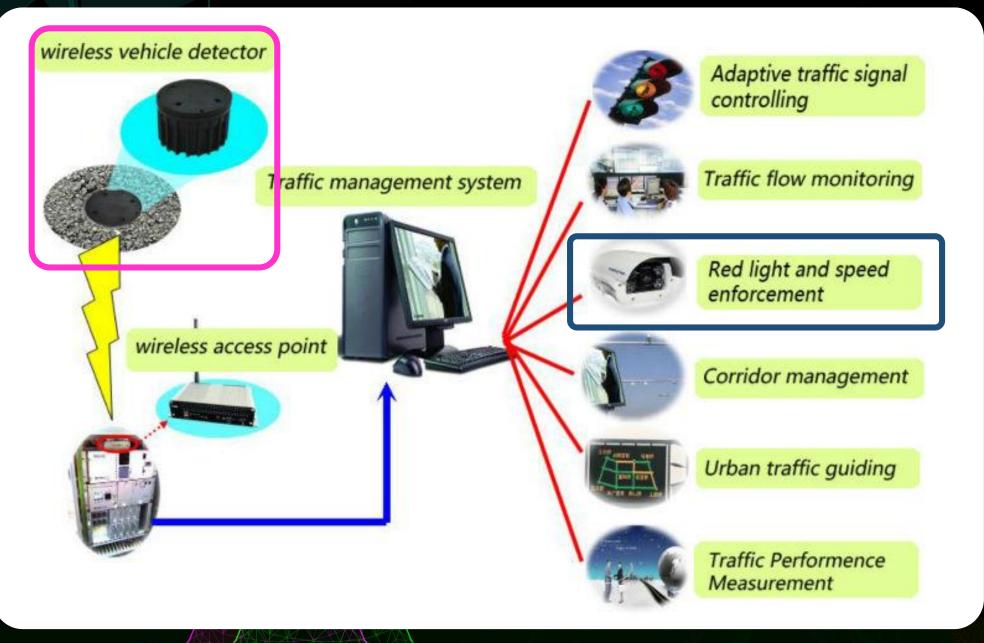
- Ettercap filters for traffic manipulation
- We used Common Open Research Emulator (CORE) installed on Cybati platform
- Tool for emulating networks on one or more machines

[1 (0)]: /opt/ZN/hmi_on.ef [2 (0)]: /opt/ZN/hmi_blank.ef [3 (0)]: /opt/ZN/hmi_yellow.ef [4 (0)]: /opt/ZN/hmi_red.ef [5 (0)]: /opt/ZN/hmi_main_yellow.ef [6 (0)]: /opt/ZN/hmi_side_yellow.ef [7 (1)]: /opt/ZN/hmi_main.ef [8 (0)]: /opt/ZN/hmi_side.ef

What is in the real world?

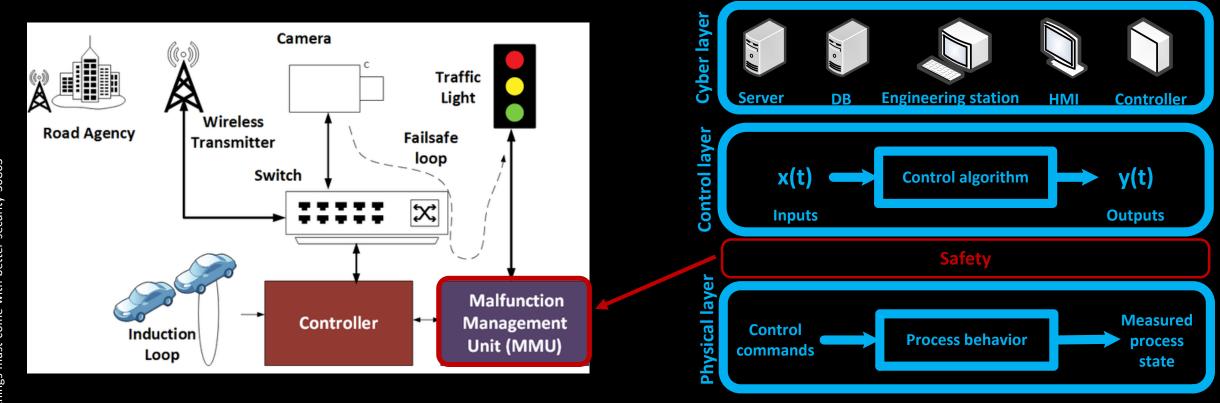


Modern traffic light systems are complex


□ All traffic light systems are built and configured differently!

- Even from the same vendor
- To the customer specification
- **Complex** interactive system
 - Traffic IS a part of the system
- Seems like no security requirements or regulations YET

ZERO


ZERONGHTS

Road traffic management

Modern traffic light systems ensure safety

Functional safety requirements

European and local directives

- EN 12675 Traffic signal controllers. Functional safety requirements. First published in 2000.
- National normatives based on EN 12675

Detection of failure

- Minimal time to detect the occurrence of fault and take action is 100-850 ms depending on class of fault
- Diagnostic checks of controller logic system and action to be taken shall not be greater than 10 sec

Functional safety

- MMU can be implemented as stand alone supervisor or as safety processor on the main CPU board (the latter is more common)
 - At this point we cannot judge on the security of implementation

Failure modes

- Typical safety state of operation is blinking yellow
- Major fault irreversible, requires (manual) controller reset
- Minor fault reversible, controller may return to full functionality

Typical safety checks

- All color and green/green conflicts
- Signal sequences
- Min. and max. times for all signal states
- Min. and max. cycle time for coordinated signals
- Min. and max. lamp load for red, amber and green
- Min. and max. main supply voltage for safe operation
- Min. and max. main supply frequency
- ✓ and others

https://www.swarco.com/en/Products-Services/Traffic-Management/Urban-Traffic-Management/ITC-Traffic-Controllers/ITC-3-Traffic-Controller#tab-7642

Access

In the mass media

Previous works

Cesar Cerrudo of IOActive

- Sent fake data to vehicle detection sensors' Access Point
- Could influence behavior of the traffic lights

http://blog.ioactive.com/2014/04/hacking-us-and-uk-australia-france-etc.html

Research group of University of Michigan

- Hacked into wireless traffic light control communication and into controller
- Could influence behavior of the traffic lights

http://web.eecs.umich.edu/~brghena/projects/green_lights/ghena14green_lights.pdf

Bastian Bloessl

- Reversed engineered local wireless traffic light communication
- Reversed and decoded live bus stops telemetry

http://www.bastibl.net/traffic-lights/

Shodan old friend.....

According to vendors' specifications, traffic light systems are Internet-friendly

- Remote accessible diagnostic tools
- Internet accessible control panel
- Application updates
- Logs are accessible over internet
- (Internet connectivity is used with care by traffic lights operators in EU (?)) -> at least with ones we spoke to

We did not find a traffic light online YET

- But several Traffic Management Systems (with weak protection)
- Not allowed to disclose

KAR - Korte Afstands Radio <=> Short Distance Radio

- System for requesting green for emergency vehicles
 - Based on open standards

http://bison.connekt.nl/standaarden/ https://en.wikipedia.org/wiki/OpenAIR

- Request packet contains among others:
 - ID of intersection, vehicle speed, direction
 - Type of car and its ID (e.q. police, fire brigade, ambulance, public transport)

CALL FOR ZERO DAY EXPLOIT ;-)

• No authentication, authorization or encryption

Afterword

And Oscar goes to.....

Nope, not to Marina

And Oscar goes to those....

Who can design meaningful attack scenario OR Who can overcome safety protections

And it's feeling goooood.....

It's green, so keep good speed!

Bad day :-(

(ouch!) Also under traffic light controllers supervision

Sight challenged pedestrians

Anybody can mimic the sound signal and play it when NOT GREEN

- Is real current concern
- Please don't kill pedestrians!

And Oscar goes to those....

Who can design meaningful attack scenario OR Who can overcome safety protections

Possible Attack on Safety

Confirmed by a traffic engineer as "maybe possible"

- Central traffic managements receives status of Safety Unit
- CAN Bus interface between Application and Safety CPU is found in current solutions
- Steps to take:
 - Acquire the hardware (like Cesar Cerrudo/IOActive)
 - Fuzz the connection between Application and Safety
 - Reverse engineer safety implementation
 - Discover remote vulnerability
 - Exploit vulnerability to bypass safety

Marina Krotofil @marmusha marmusha@gmail.com