Static Checking of GDPR-Related Privacy Compliance

SHUKUN TOKAS

DOCTORAL RESEARCH FELLOW,

RELIABLE SYSTEMS (PSY) GROUP,

UNIVERSITY OF OSLO

Outline

GDPR

- GDPR Formalization
 - Role, Purpose, & Access Restrictions
- Policy Definition Language
- Formalization of Policy Compliance
- Type-effect System
 - Static Compliance Checking : Case study
- Runtime System
- Conclusion

Research Problem

To investigate how to formalize fundamental privacy principles and to provide a built-in ability (in language) to fulfill data protection obligations under the GDPR.

General Data Protection Regulation (GDPR)

Data Protection and Privacy Regulation in EU

•Central Principle : "Organizations collecting and processing personal data must be explicit about

- how the data will be used and
- that the data is actually used for the purposes for which it was collected".
- Privacy by Design (article 25)
 - Identify privacy requirements at design stage => embed them into subsequent implementation

GDPR Formalization

Principals

Purpose

Access Rights

Consent (Static Notion)

Principals

describes <u>who</u> can access sensitive data

given by interface

- Organized in open ended hierarchy
 - Any : predefined, least specialized interface
 - I < J, I is a subinterface of J</p>
 - e.g. Doctor < Nurse</p>

Interface and Cointerface

```
interface Patient{
```

begin

with Doctor // Doctor is a cointerface
void updatePrescription(String newPresc);

end

Interface Patient has Doctor as cointerface, restricting callers to Doctor.

Callee can restrict Callers

Cointerfaces describe roles.

Purpose

describes what the system intends to do with sensitive data

- •purpose hierarchy, to ensure data will be used only for stated purposes
- Natural language statement => purpose title (unique in application context)

Explicit language construct

Access Rights

 Describes <u>how</u> sensitive data can be accessed, distinguishing between different operations

Self, read, write, rincr etc

Lattice

meet and join

Principal + Purpose + Access Right = Policy

- Privacy Policy, in this setting is a statement that expresses permitted use of the sensitive information by declared program entities.
 - restricting who, why, and what
 - Implicit policy for default access
 - implicit policy to support article 15
- Programmer specify these policy on
 - Type Definition : upper bound on permitted use of sensitive information
 - Policy set

Π

- Method : upper bound on actions performed by program entities
 - Single policy
- Default Policy : no-sensitive information (denoted by
)

Privacy in Software Ecosystem

- How privacy is situated within a large IT Project?
 - Multiple professions that all interact during various stages of s/w development
- Roles that hold a stake in how the software is developed:
 - Project managers ensure resource availability, team communication
 - Lawyers track regulatory issues, aligning software with legal norms
 - Requirement engineers collect, analyze and manage s/w requirements
 - Designers translate requirements into design, privacy-related requirements
 - Programmers translate software design into source code
 - Tester validate, discover ways for privacy violations

Language Setting & Program Constructs (I)

- Setting: active object languages for distributed concurrent OO systems
 - Compositional semantics
- Approach : Type system based enforcement

• How to link policy constructs in programs?

Ommitted Slides:

- Policy Definition Language, BNF syntax of language
- Policy Compliance Formalization, on policy and policy sets
- Meet and join over policy sets, closure
- •Language definition, integration of policy definition with core language
- Static-type system,
 - Class, Interface, Method and statements.
- Case study
 - Policy specification
 - Integrating policy with core language
 - Static compliance checking

Runtime Compliance

- Formalize Policy Soundness
 - Policy level obtained at runtime is greater or equal to one calculated by static policy typing
 - i.e syntactic compliance implies semantic compliance

Theoretical results

- Soundness
- Runtime compliance
- Progress

Conclusion

Investigated opportunities with the GDPR from language-based perspective.

•Focused on *Privacy by Design* principle.

Defined language for formulating policy.

- Formalized
 - Static privacy policies.
 - Notion of policy compliance.
 - Rules for policy compliance (given by extended type and effect system).
 - Runtime Compliance.

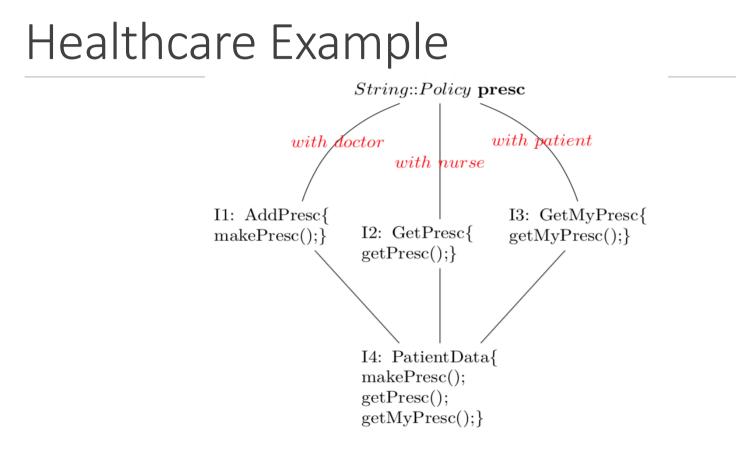


Figure 1: Healthcare Example