

Challenges on verifying Neural Network based Safety-Critical Control Software (SCCS)

Jin Zhang May.07.2019

About me

SiChuan Province, CHINA

Safety, Security, and Autonomous Vehicle

COINS

 \Box NTNU

RAMS group, NTNU

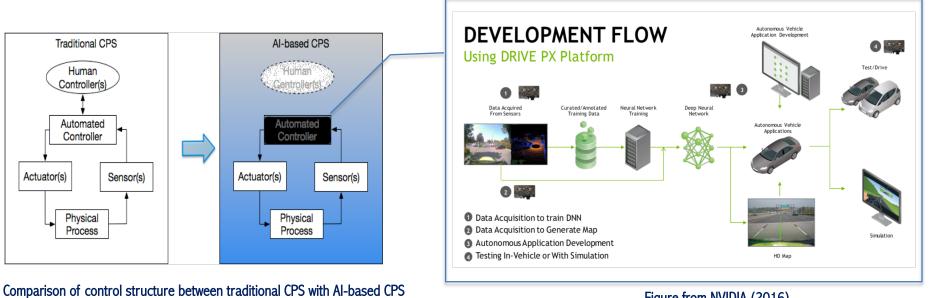
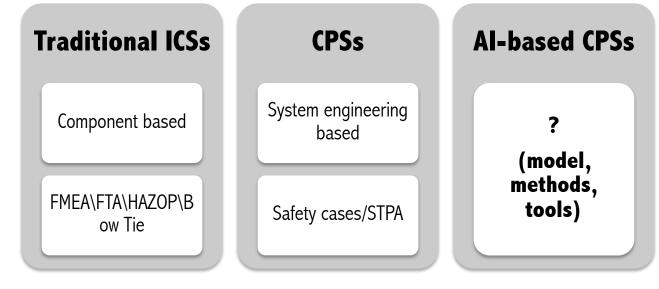
Norwegian University of Science and Technology

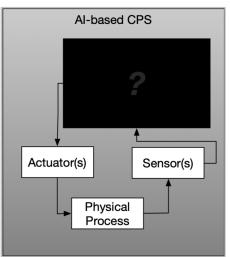
Challenges on verifying Neural Network (NN) based Safety-Critical Control Software (SCCS)

- Presentation based on 1 review paper
 - "<u>Testing and verification of neural network based safety-critical</u> <u>control software: A systematic literature review</u> ", (Submitted to Journal of Information and Software Technology), Apr., 2019
- And my on-going work about Safety Verification of Decision algorithm in Autonomous Vehicle

Motivation

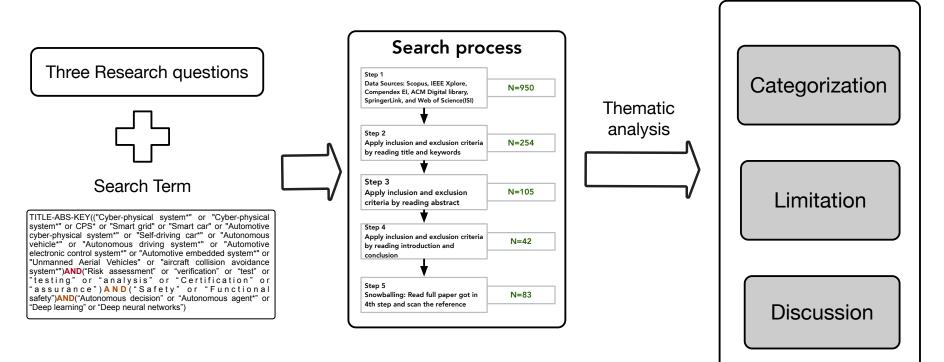
• Artificial Intelligence(AI) Based CPS : a paradigm shift from traditional CPS


Figure from NVIDIA (2016)

lacksquare Norwegian University of Science and Technology

Research gap

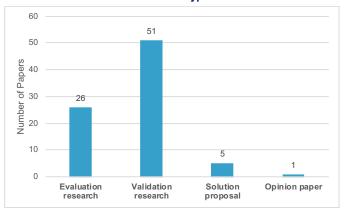

• Traditional methods for safety analysis are not capable for black-box systems.

NTNU Norwegian University of Science and Technology

Methodology

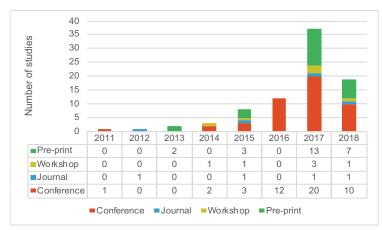
Systematic Literature Review Process

D NTNU Norwegian University of Science and Technology


Results:

Demographic attributes

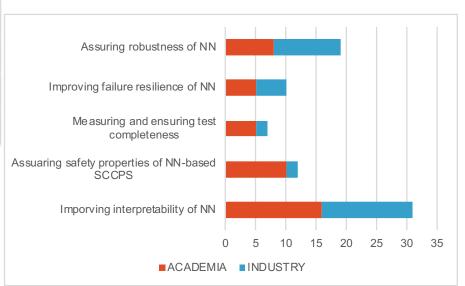
Application domain


Application domain	No. of studies				
General SCCPSs	59				
Automotive CPSs	13				
Autonomous aerial systems	5				
Robot system	5				
Health care	1				

Research type

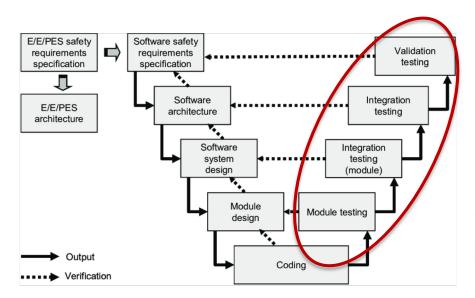
Norwegian University of Science and Technology

Publish year and types of work


Geographic distribution

Categorization

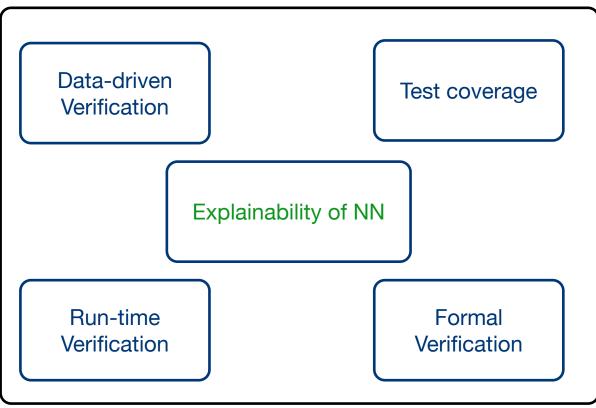
Aims	#	%
CA1: Assuring robustness of NN(Neural network)	17	21.8
CA2: Improving failure resilience of NN	11	14.1
CA3: Measuring and ensuring test completeness	7	8.9
CA4: Assuring safety properties of NN-based SCCPSs	12	15.4
CA5: Improving interpretability of NN	31	39.7


A classification of approaches to test and verify NN-based SCCS

Comparing the interests difference of academia and industry

I NTNU Norwegian University of Science and Technology

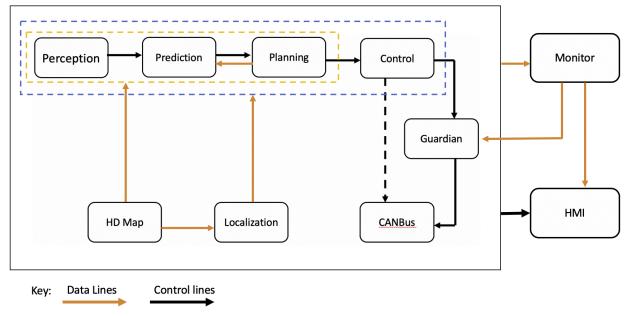
Limitations of current research


IEC61508 Software Safety Lifecycle

Major T & V activities in software safety lifecycle	Completeness	Correctness	Repeatability	Precisely defined testing configuration	Freedom from intrinsic faults	Understandability	Verifiable design	Fault tolerance	Defense against common cause failure
Testing for architecture design	0	1	N/A	N/A	10	31	2	5	0
module testing and integration	9	7	1	0	N/A	N/A	N/A	N/A	N/A
Programmable electronics integration (Hardware and software)	0	4	0	0	N/A	N/A	N/A	N/A	N/A
Software verification	2	9	0	0	N/A	N/A	N/A	N/A	N/A
No method contributes to this property	Some methods contribute to this property			Activity is not relevance to this property					
Very few methods contribute to this property	Many methods contribute to this property								

A mapping of reviewed approaches to IEC61508 Software Safety Lifecycle

D NTNU Norwegian University of Science and Technology


Research challenges

NTNU Norwegian University of Science and Technology

Future work

• Case study: Safety Verification of Decision algorithm in Autonomous Vehicle

Baidu Apollo 3.5 Software Architecture [1]

[1] Apollo 3.5 Software Architecture, https://github.com/apolloauto/apollo/blob/master/docs/specs/apollo3.5softwarearchitecture.md, Accessed: 2019-04-24

U Norwegian University of Science and Technology

Comments and Suggestions? Thanks!

