

Automated Authentication of Audiovisual Contents: A Biometric Approach

Ali Khodabakhsh - COINS Winter School - Finse

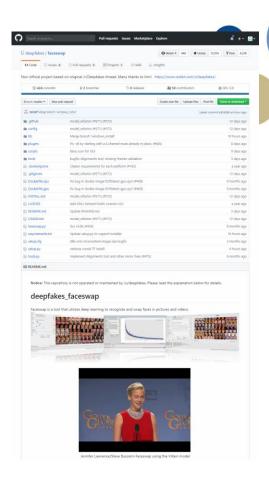
Norwegian Biometrics Laboratory - NTNU May 2019

Background

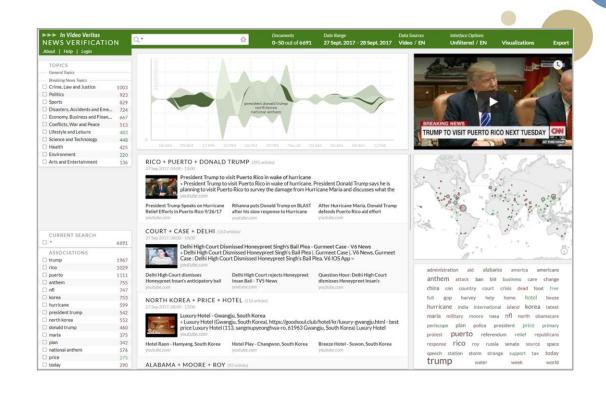
- B.Sc. From University of Tehran
 - Electrical Engineering (Biomedical Engineering)
- M.Sc. From Özyeğin University
 - Computer Science (Speech Processing)
- PhD Candidate, NTNU (Since Sept. 2017)
 - Information Security (Biometrics)

Outline

- Introduction
 - Research Questions
- Research Progress
 - Taxonomy
 - Subjective Tests
 - Efficacy
- Future Work
 - In Progress



INTRODUCTION


Fake Faces

- Rapid advancements
 - Pinscreen (2016), Face2face (2016), WaveNet (2016), Synthesizing obama (2017), DeepFake (2017), Vid2vid (2018), HeadOn (2018), Deep video portraits (2018), ...
- Entering age of Video-realism
 - Automatic, Cheap or Free, Publicly Available
- Vulnerability
 - Unreliable sources and echo chambers

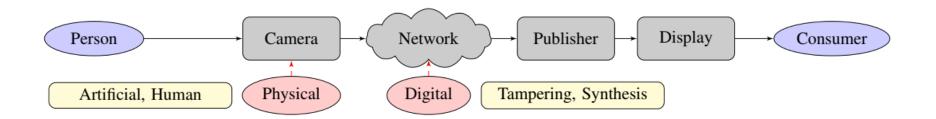
Automatic Detection

- Context-based
 - Source
 - Network
 - Metadata
- Content-based
 - Linguistic
 - Audiovisual

Existing Approaches

- CNN- and RNN-based detectors for:
 - Face Swap [1]
 - Face2Face [2,3]
 - DeepFake [4,5]
- Challenges
 - Lack of diverse large datasets
 - Incidental Manipulations (Compression, Overlay, etc)
 - Generalizability

Research Questions

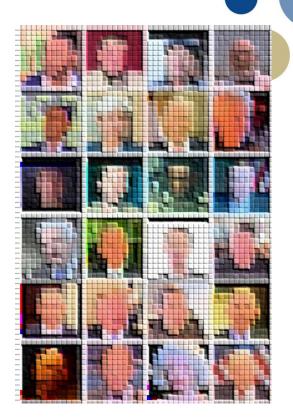

- Are existing fakes believable? (Done)
- Can we detect them with video-based methods? (In progress)
- Can we detect them with speech-based methods?
- Can we combine modalities?
- Can we detect using cross-modality methods?

RESEARCH PROGRESS

Taxonomy

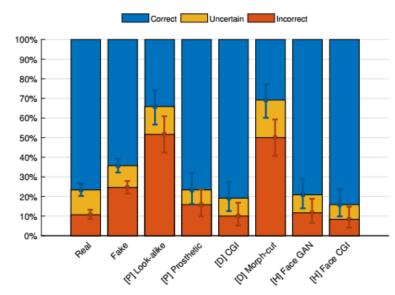
- Defining categories of fake faces
- Providing grounds for collection of datasets

Taxonomy

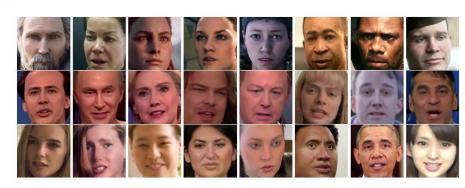

		Visual	Auditory	Animation
Physical	Artificial	Androids - Screens	Biomechanical - Loudspeaker	-
	Human	Twins - Prosthetic makeup	Impersonation	Impersonation
T DIGITAL	Record-based	Image-based (Tampering)	Unit-selection (Tampering)	Cloning
	Model-based	CG (Synthesis)	SSS (Synthesis)	Autonomous

Combination

Obfuscation


Subjective Tests

- Assess vulnerability of humans
- Assess effectiveness of fakes
- Effects of training
- Effects of having a biometric reference
- Effects of knowing of the individual
- Common clues
- ...


Subjective Tests

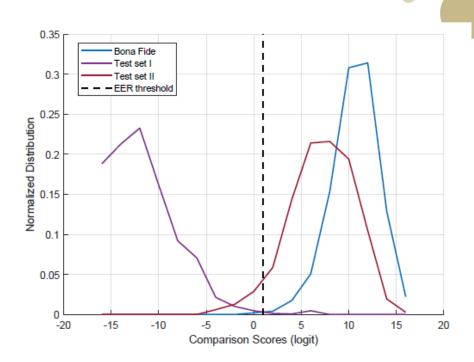
- Two types of effective fakes identified
- Head and face are the most used clues
- Training results in less mistakes
- Biometric Reference and Knowing of the target lowers uncertainty
- Older people make more mistakes and are less uncertain

Efficacy

- Evaluation of 6 detectors
 - 1 Texture-based
 - 5 Deep Learning (Transfer Learning)
- Applying the state-of-the-art to data collected in the wild
 - 150 Videos from YouTube
 - 3 Different Categories
 - Available for download at http://ali.khodabakhsh.org/ffw/

Efficacy

Known Fakes


	APCER	BPCER	EER
LBP	$3.80\% \pm 0.99\%$	$2.87\% \pm 0.86\%$	3.33%
AlexNet	$7.80\% \pm 1.38\%$	$1.73\% \pm 0.67\%$	3.73%
VGG19	$2.47\% \pm 0.80\%$	$0.47\% \pm 0.35\%$	1.40%
ResNet	$2.27\% \pm 0.77\%$	$0.47\% \pm 0.35\%$	1.40%
Xception	$2.47\% \pm 0.80\%$	$0.13\% \pm 0.19\%$	1.07%
Inception	$0.67\% \pm 0.42\%$	$0.47\% \pm 0.35\%$	0.53%

	APCER	BPCER	EER
LBP	89.00% ± 1.62%	$2.87\% \pm 0.86\%$	48.73%
AlexNet	$91.47\% \pm 1.44\%$	$1.73\% \pm 0.67\%$	32.13%
VGG19	$90.73\% \pm 1.50\%$	$0.47\% \pm 0.35\%$	29.40%
ResNet	89.53% ± 1.58%	$0.47\% \pm 0.35\%$	30.33%
Xception	93.20% ± 1.30%	$0.13\% \pm 0.19\%$	26.87%
Inception	$91.93\% \pm 1.41\%$	$0.47\% \pm 0.35\%$	27.47%

Generalizability

	Full	Image Manipulation	
	CGI	FakeApp	Other
AlexNet	32.60%	28.80%	34.37%
VGG19	28.00%	31.20%	28.60%
ResNet	28.80%	28.37%	34.40%
Xception	23.60%	25.20%	31.20%
Inception	23.40%	27.40%	31.40%

IN PROGRESS AND FUTURE WORK

In Progress

- Generalizability
 - A balanced dataset of 6 categories
 - Deepfake, Morph-cut, CGI, Lookalike and Prosthetic makeup, FaceSwap, + Face2face
 - Cross category evaluation
 - Comparison with subjective performance
 - A new loss function
- Encyclopedia of fake faces and voices
 - Reference for all known types of fakes + datasets

Future Work

- Incorporating temporal data
- Repeat for speech
- Encoding Decoding theory of Communication

Extended Subjective Test

- Browser-based:
 - Simulates real-life encounter
 - Takes ~40 minutes
- Includes:
 - Feedback and training

http://test.khodabakhsh.org

Thank you for your attention. Questions? Comments? Suggestions?

Ali Khodabakhsh (ali.Khodabakhsh@ntnu.no)

Test: http://test.khodabakhsh.org/

Dataset: http://www.khodabakhsh.org/ffw

References

- [1] Zhou, Peng, et al. "Two-stream neural networks for tampered face detection." 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2017.
- [2] Rössler, Andreas, et al. "FaceForensics++: Learning to Detect Manipulated Facial Images." *arXiv preprint arXiv:1901.08971*(2019).
- [3] Afchar, Darius, et al. "Mesonet: a compact facial video forgery detection network." 2018 IEEE International Workshop on Information Forensics and Security (WIFS). IEEE, 2018.
- [4] Güera, David, and Edward J. Delp. "Deepfake Video Detection Using Recurrent Neural Networks." 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). IEEE, 2018.
- [5] Korshunov, Pavel, and Sébastien Marcel. "DeepFakes: a New Threat to Face Recognition? Assessment and Detection." *arXiv* preprint *arXiv*:1812.08685 (2018).