Modeling epidemics on networks

Epidemic spreading

the Black Death

Probably originated in Central Asia, it spread throughout all of Europe between 1346 and 1353. The Black Death is estimated to have killed 30-60% of Europe's population

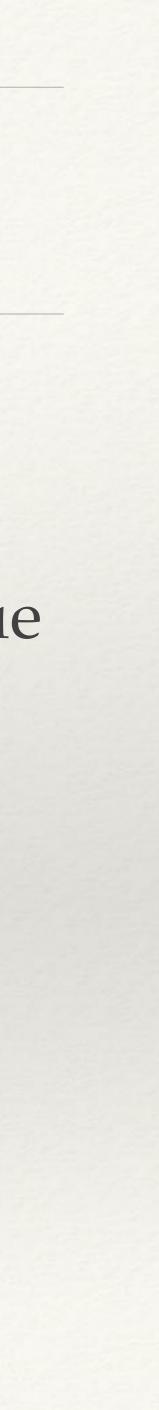
Epidemic spreading

* Problems:

- aware of it

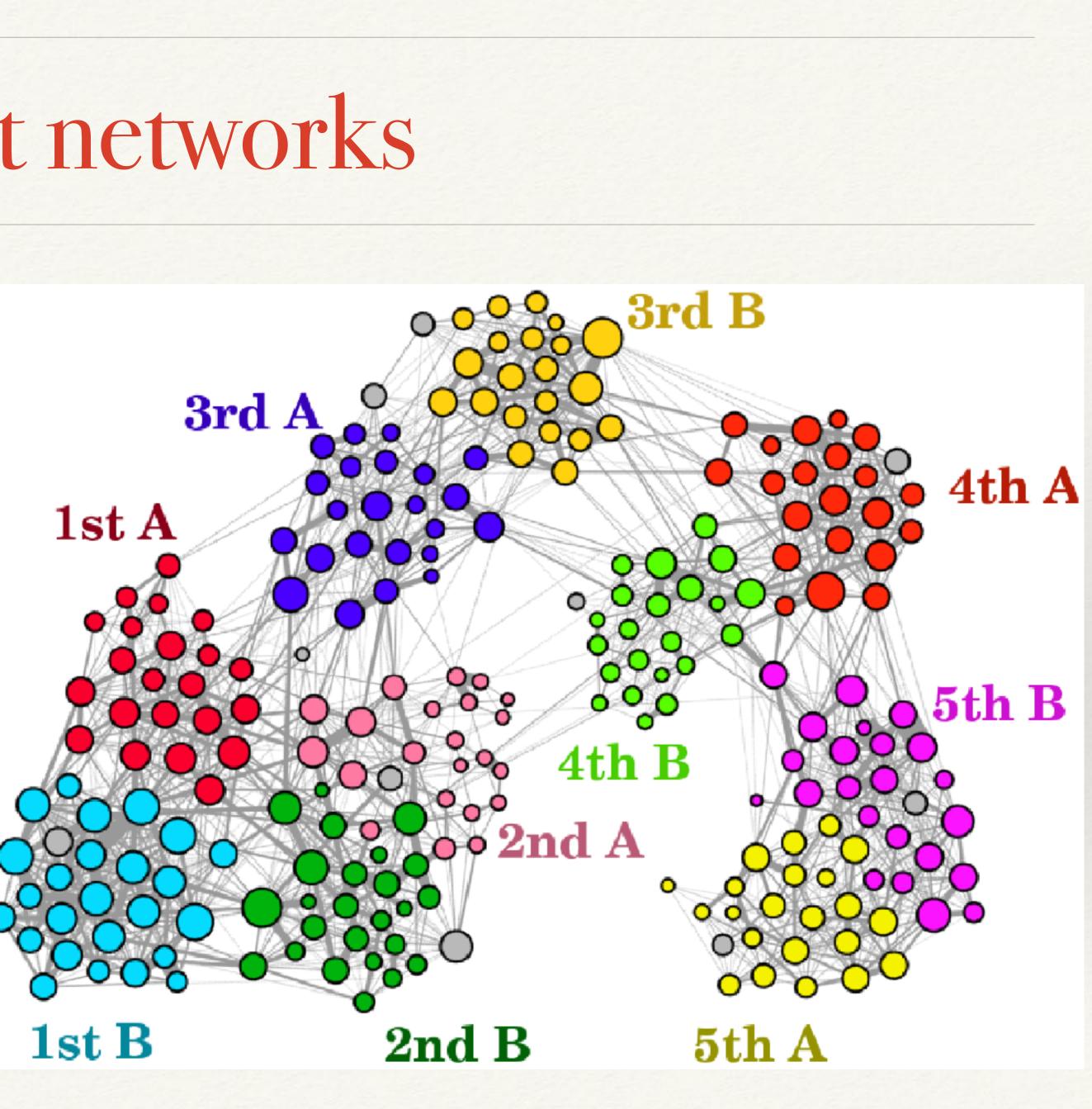
* Nowadays the speed of epidemic spreading has increased enormously due to advances in transportation: someone contracting Ebola in Africa can travel to Europe, America and Asia and spread the disease before being

* Technology has created new types of epidemics: computer viruses & malware spread over the Internet. Mobile phone viruses spread via Bluetooth or MMS. Misinformation spreads through social media, etc.



Contact networks

* Epidemics spread on contact networks, such as networks of physical contacts, transportation, the Internet, email, online social networks, and mobile phone communication



Epidemic models

- * Classic epidemic models divide the population into compartments, corresponding to different stages of the disease
 - * Key compartments:
 - * **Susceptible (S)**: individuals who can contract the disease
 - transmit it to susceptible individuals
 - be infected anymore

* Infected (I): individuals who have contracted the disease and can

* **Recovered (R)**: individuals who recovered from the disease and cannot

The SIS model

- * Just two compartments: Susceptible (S) and Infected (I)
- * Dynamics:

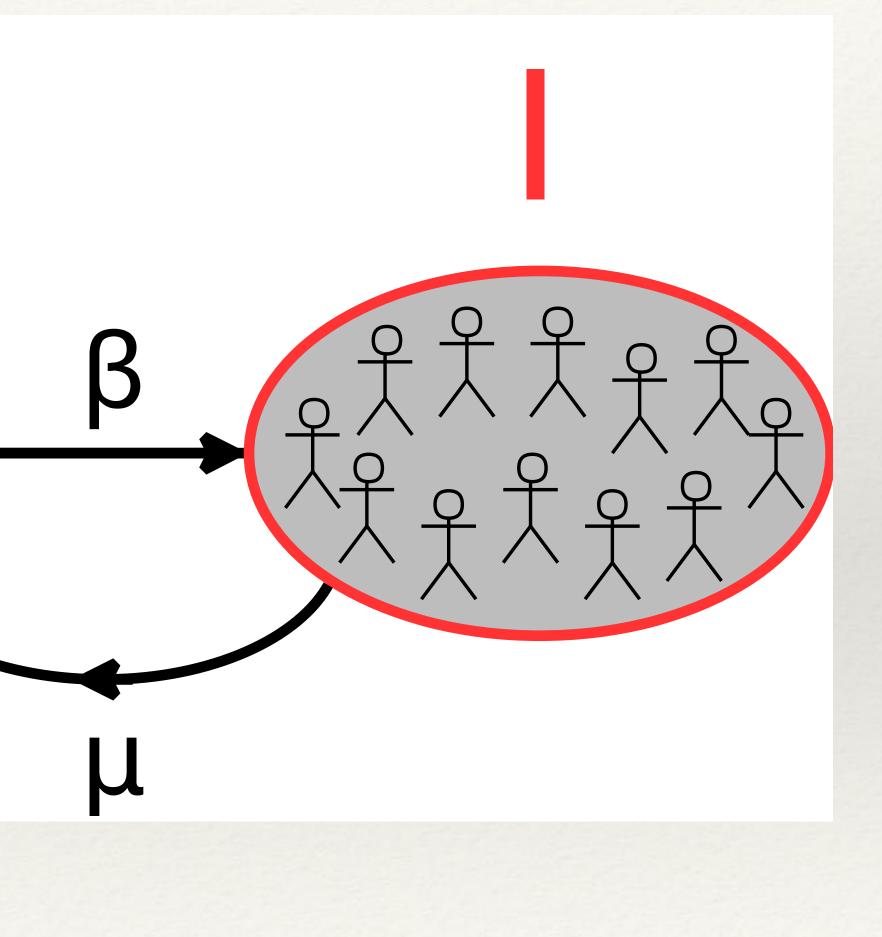
 - probability µ (recovery rate)
 - (e.g., common cold)

* A susceptible individual gets infected with a probability β (infection rate) * An infected individual recovers and becomes susceptible again with a

* The model applies to diseases that do not confer long-lasting immunity

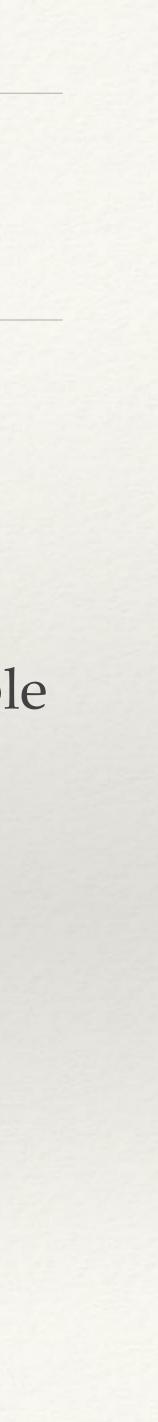
The SIS model

S



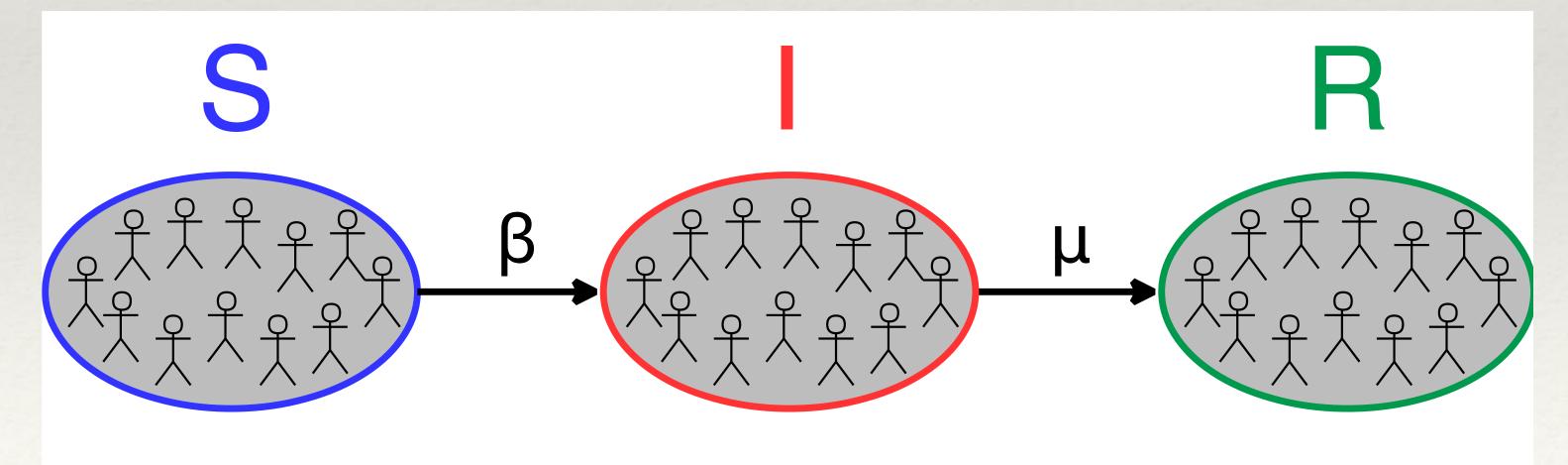
The SIS model

- * Simulation of SIS dynamics on networks:
 - * Take a network (e.g., a random network or a real contact network)
 - * A number (fraction) of the nodes are infected (e.g., at random), all others are susceptible
 - * All nodes are visited in sequence
 - * For each node i:
 - * If i is susceptible, loop over its neighbors: for each infected neighbor, i becomes infected with probability β
 - $\ast\,$ If i is infected, it becomes susceptible with probability $\mu\,$

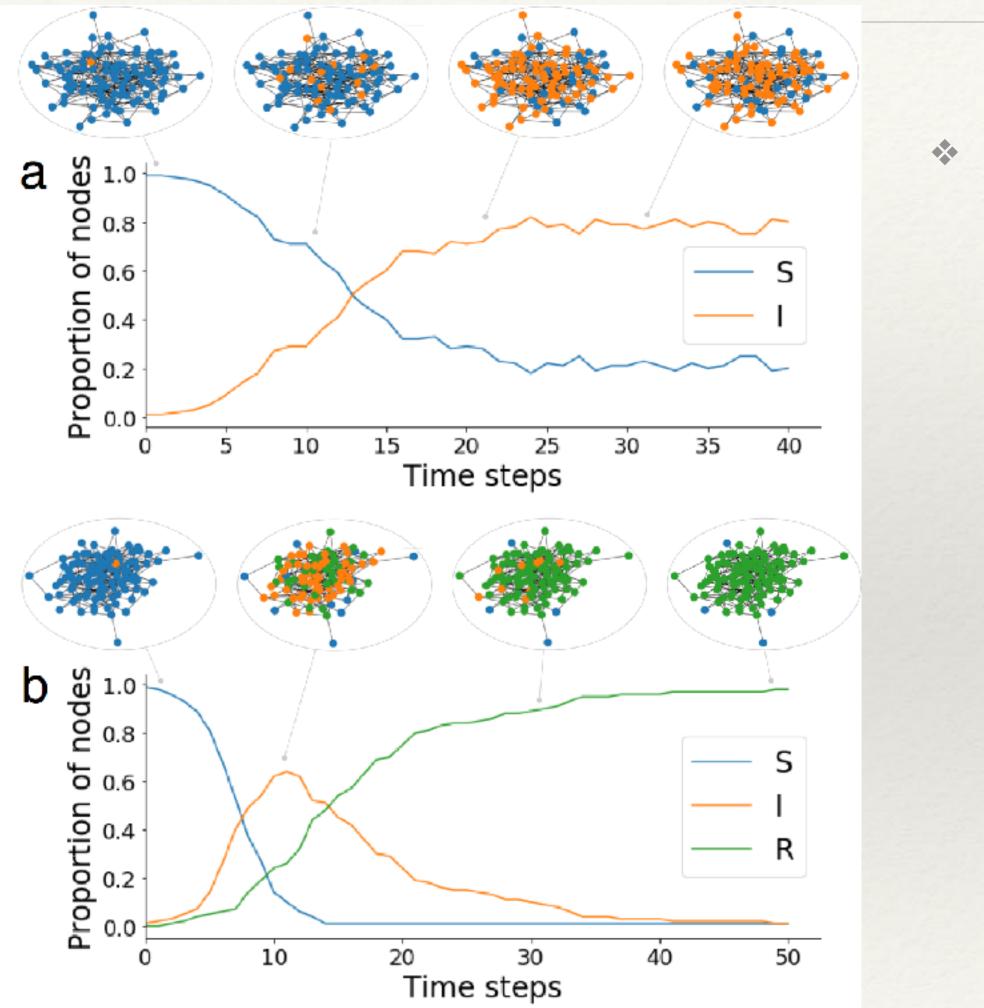


The SIR model

- * **Difference from SIS model**: when infected individuals recover, they do not become susceptible again, but they are moved to the compartment R and play no further role in the dynamics
- * The model applies to diseases that confer long-lasting immunity (e.g., measles, mumps, rubella, etc.)

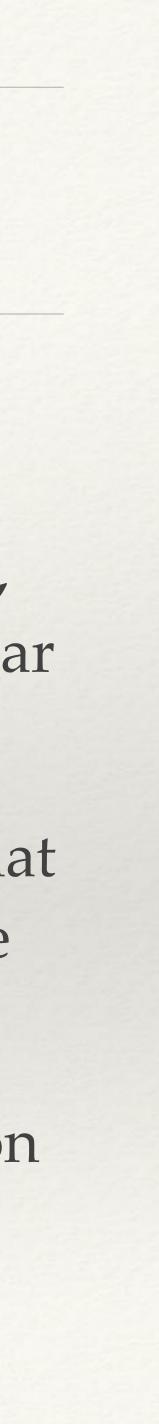


Epidemic spreading



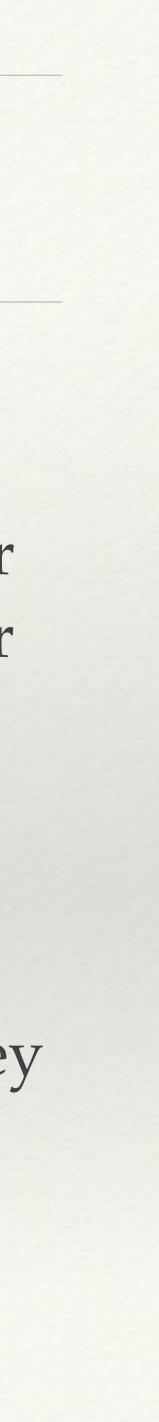
* Three characteristic stages of the **dynamics**:

- Initial stage: just a few people are infected, and the diffusion of the epidemic is irregular and slow
- * Ramp-up phase of exponential growth, that can quickly affect a large number of people
- Stationary state, in which the disease is either endemic, i.e. it affects a stable fraction of the population over time, or eradicated



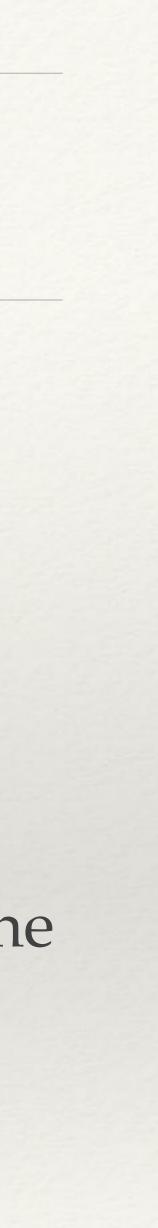
Homogeneous mixing

- * Hypothesis: every individual is in contact with every other
- Consequence: all individuals in the same compartment have identical behavior and only the relative proportions of people in the various compartments matter for the model dynamics
- * Justified for a small population, e.g., the inhabitants of a little village where all people are in touch with each other.
- In real large-scale epidemics, individuals can only be infected by the people they come in contact with. In this case it is necessary to reconstruct the actual network of contacts



SIS & SIR models on networks

- Start: homogeneous contact network, with all nodes having degree approximately equal to <k>
- * **Early stage**: few people are infected, so we can assume that every infected individual is in contact with mostly susceptible individuals
- Each infected individual can transmit the disease to about <k> people at each iteration —> the expected number of people infected by a single person after one iteration is β<k>
- * If there are I infected individuals, we expect to have $I_{sec} = \beta \langle k \rangle$ new infected people after one iteration and $I_{rec} = \mu I$ recovered people



SIS & SIR models on networks

- * Threshold condition for epidemic spreading: $I_{sec} > I_{rec}$ $\beta \langle k \rangle I > \mu I \implies R_0 = \frac{\beta}{\mu} \langle k \rangle > 1$
- * $R_0 = \beta < k > / \mu$ is the basic reproduction number
- If R₀ < 1, the initial outbreak dies out in a short time, affecting only a few individuals
- * If $R_0 > 1$, the epidemic keeps spreading

SIS & SIR models on networks

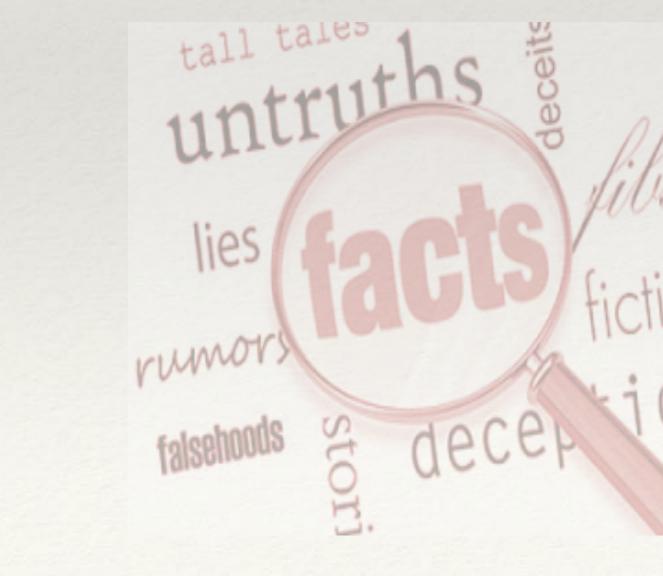
- * Problem: real contact networks are not homogeneous
- end up affecting a sizable fraction of the population!
- including possibly other hubs, and so on
- as this increases the chance to bump into hubs. So, don't vaccinate a random sample of the population: vaccinate their friends!

* Hubs drastically change the scenario. On contact networks with hubs there is effectively no epidemic threshold —> even diseases with low infection rate and / or high recovery rate may

* **Reason**: even if the infection rate is low, the process is likely to eventually infect a hub, via one of its many contacts; the hub can in turn infect a large number of susceptible individuals,

* Effective disease containment strategies should aim at isolating / vaccinating individuals with many contacts. The latter can be identified by picking the endpoints of randomly selected links,

Modeling the spread of misinformation



Questions

Is fact-checking effective against the diffusion of fake-news? Emergent

A real-time rumor tracker.

* Do "echo-chambers" play a role as inhibitors or facilitators of fake-news spreading?

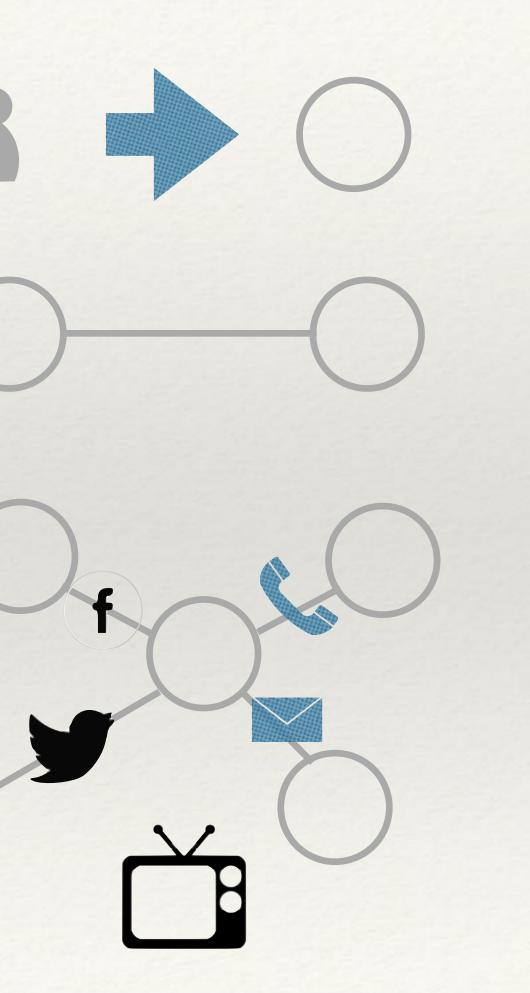
Networks and their context

- nodes are actors involved in a generic social network (no assumption is given)
- * links are **social relationships**
- nodes can be exposed to news from both internal and external sources and via different communication devices

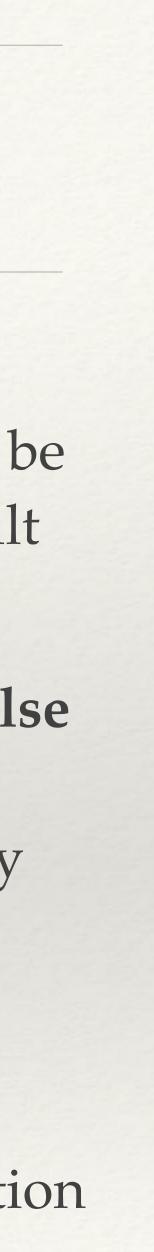
FLAMMINI

TAMBUSCIO

MENCZER

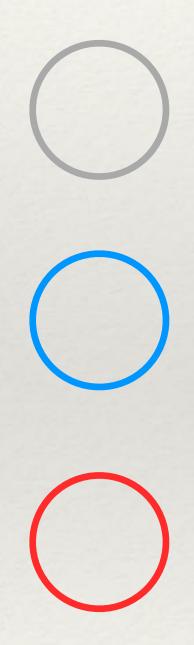


- network topologies can be created artificially or built from real data
- The news is factually false
 (can be debunked or
 someone else has already
 debunked it)
- We need a model for predictions and what-if analysis; data for validation and tuning only

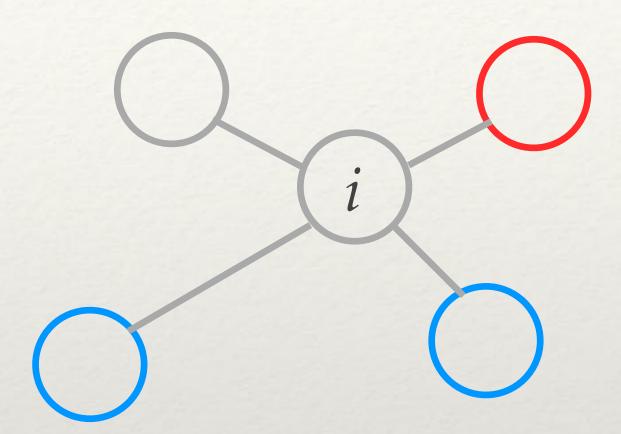


* Believer

* Fact-Checker

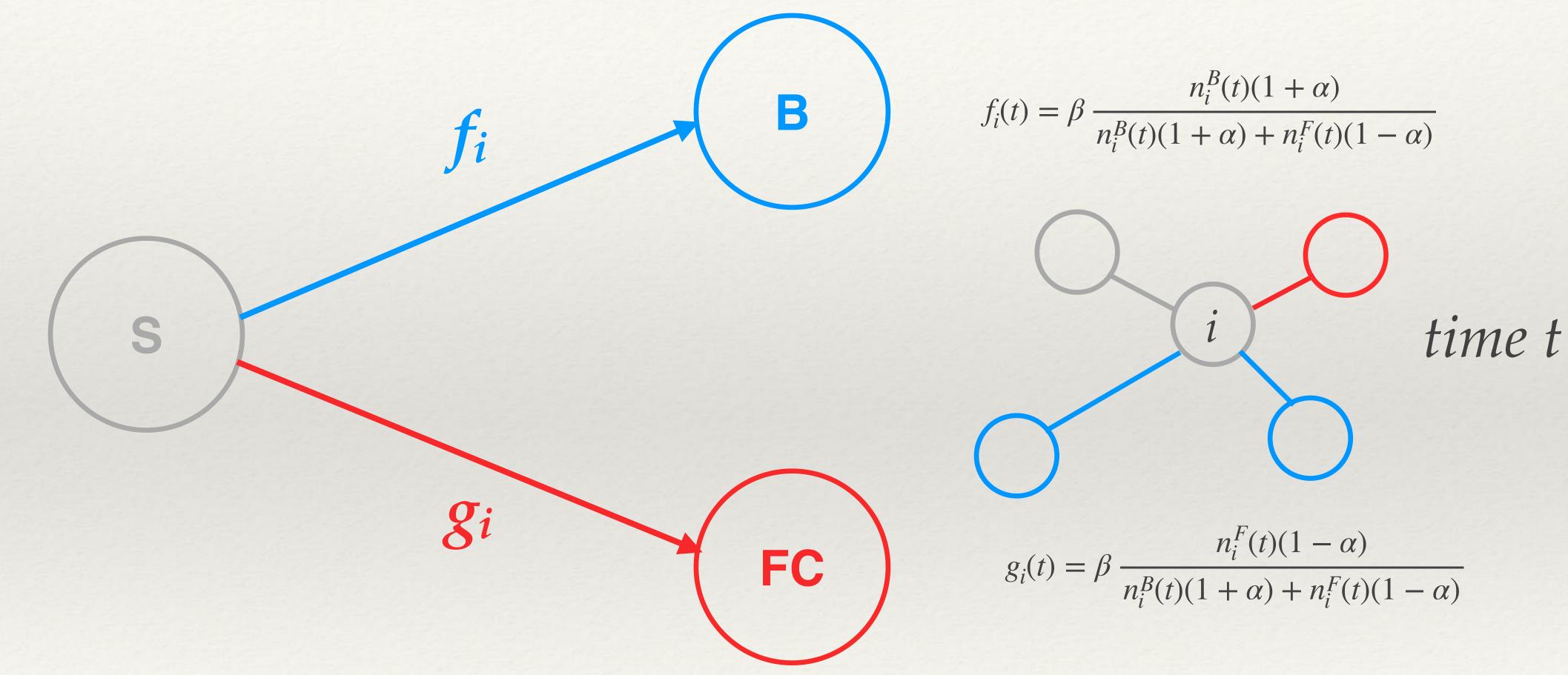


Node states in the SBFC model



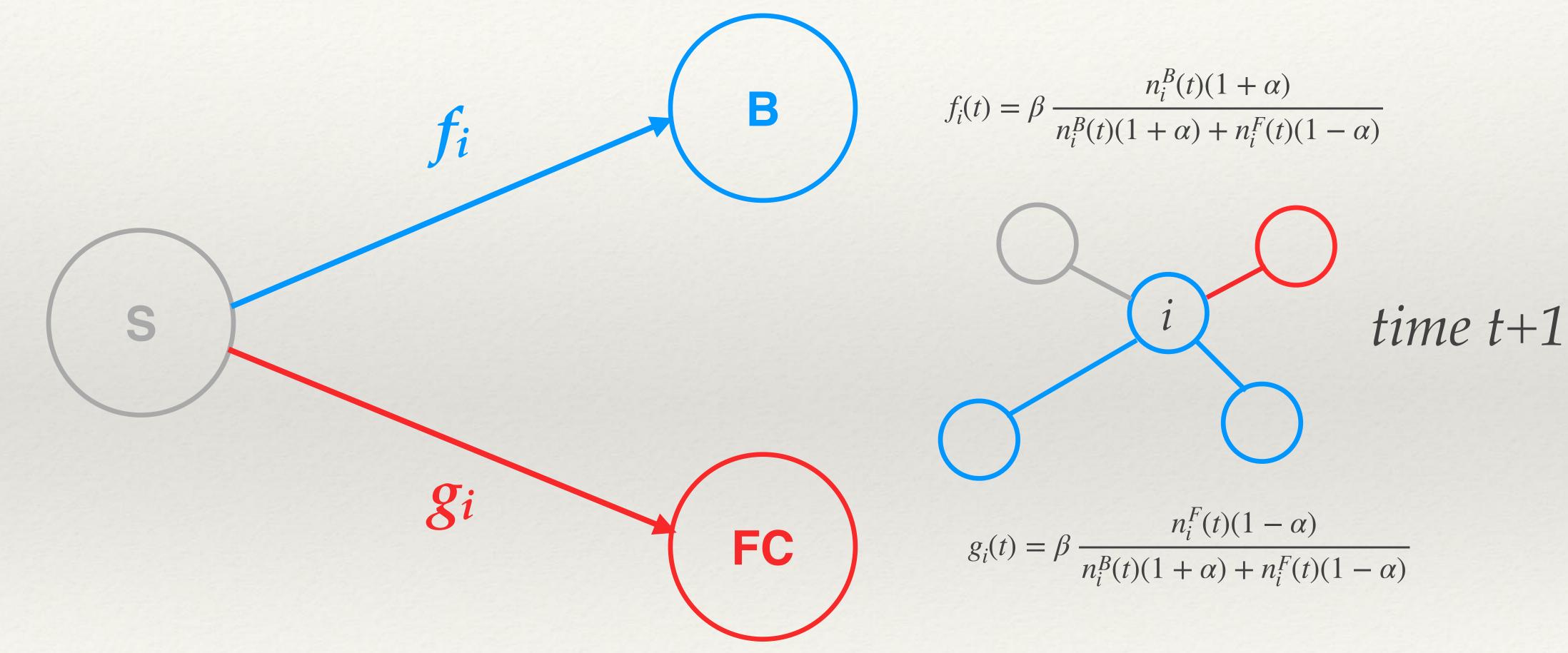
neighbors of i: ni credibility of the hoax: a spreading rate: β

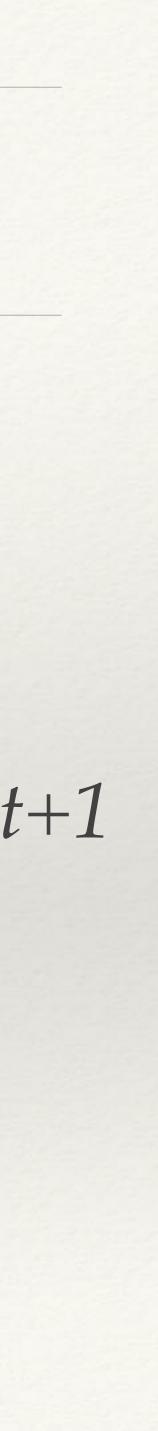
From Susceptible to Believer/Fact-Checker





From Susceptible to Believer/Fact-Checker





Pverify

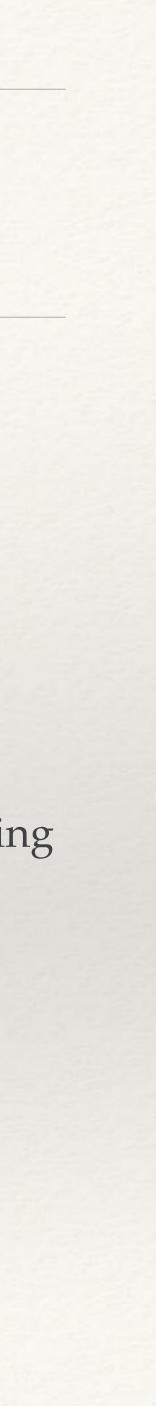
From Believer to Fact-Checker

B

FC

VERIFYING

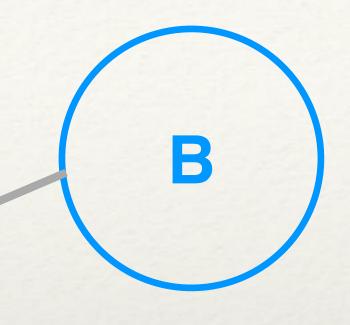
probability of fact-checking (or just deciding not to believe)



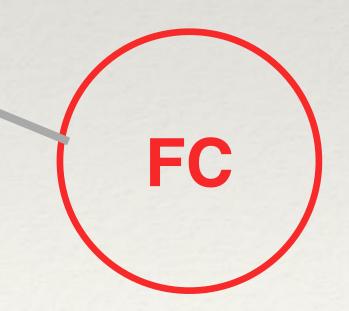
From Believer/Fact-Checker to Susceptible

Pforget

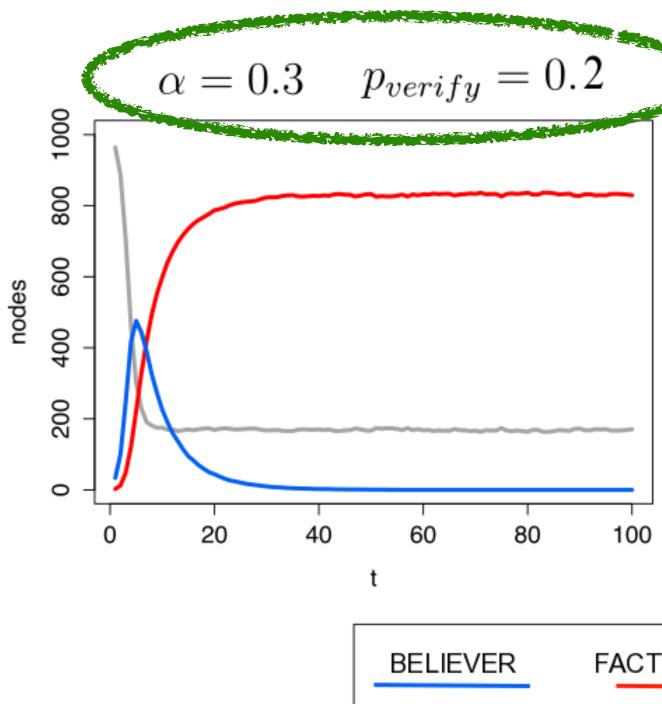
Pforget



FORGETTING

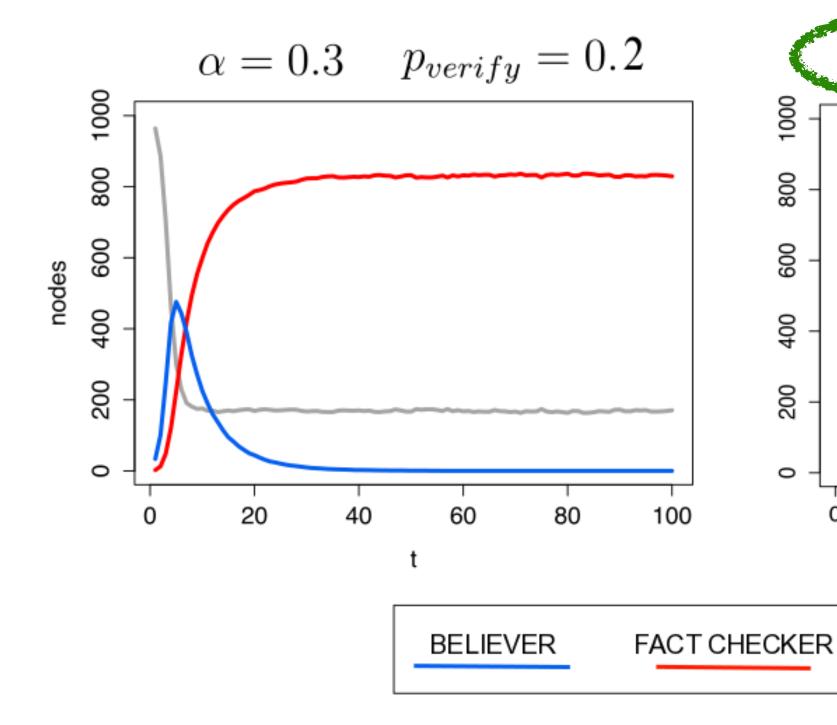


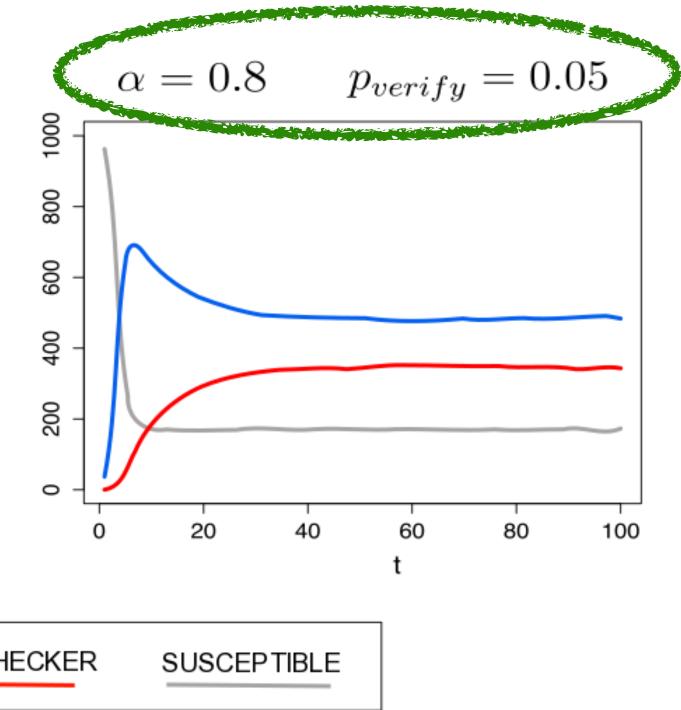
Dynamics (agent-based simulations)



FACT CHECKER SUSCEPTIBLE

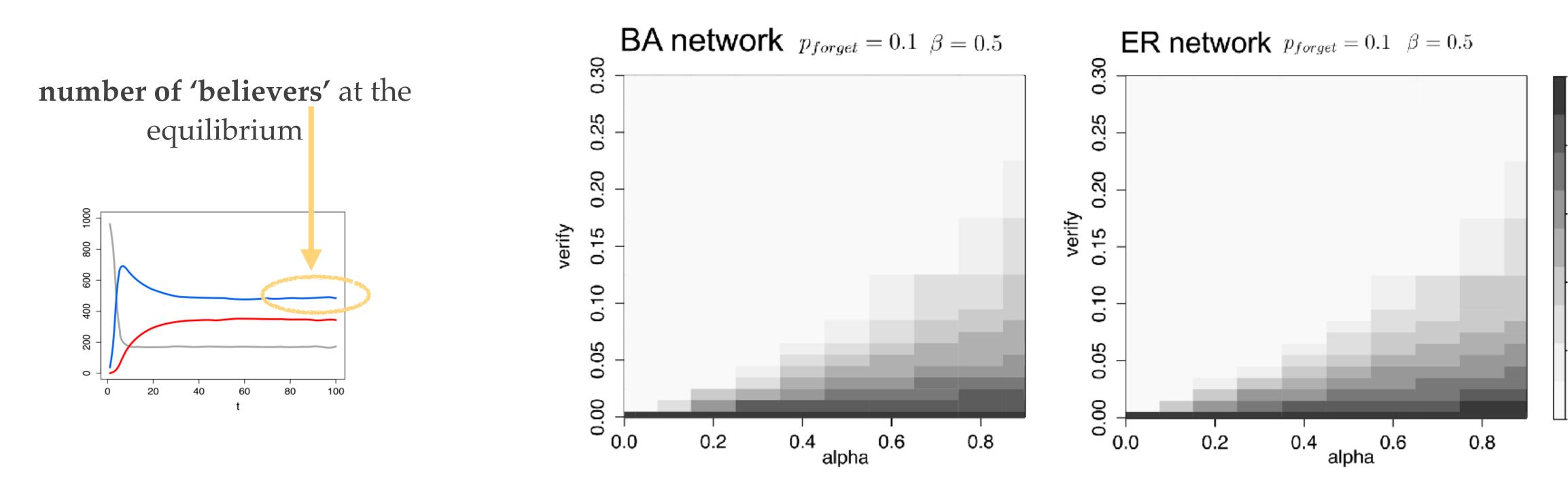
Dynamics (agent-based simulations)





hoax **credibility** and **fact-checking probability** rule hoax persistence in the network

Dynamics (agent-based simulations)



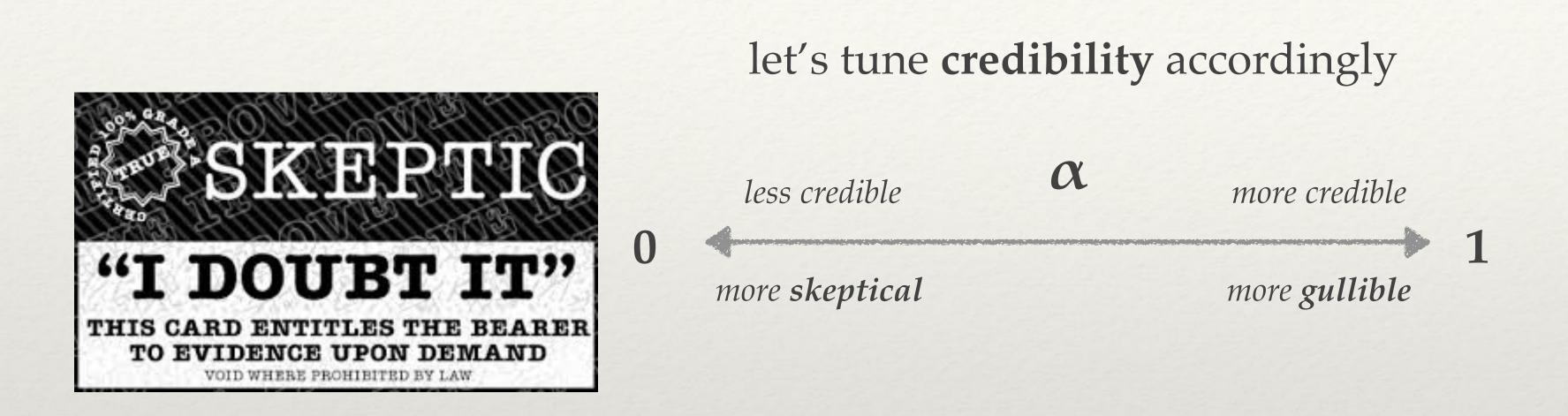
First step toward "good practices" understanding

threshold on verifying probability: our model provides an idea of how many believers we need to convince to guarantee the removal of the hoax

M Tambuscio, G Ruffo, A Flammini, and F Menczer. 2015. Fact-checking Effect on Viral Hoaxes: A Model of Misinformation Spread in Social Networks. In Proc. of the 24th Int. Conf. on World Wide Web (WWW '15 Companion)

The role of segregation

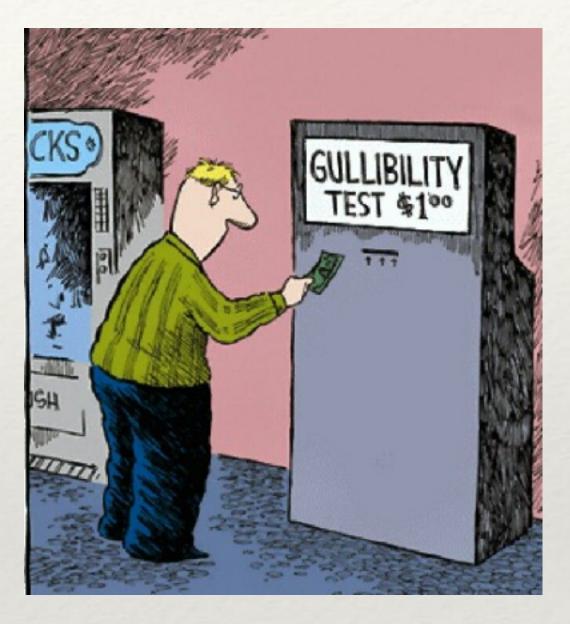
Skeptical and gullible agents



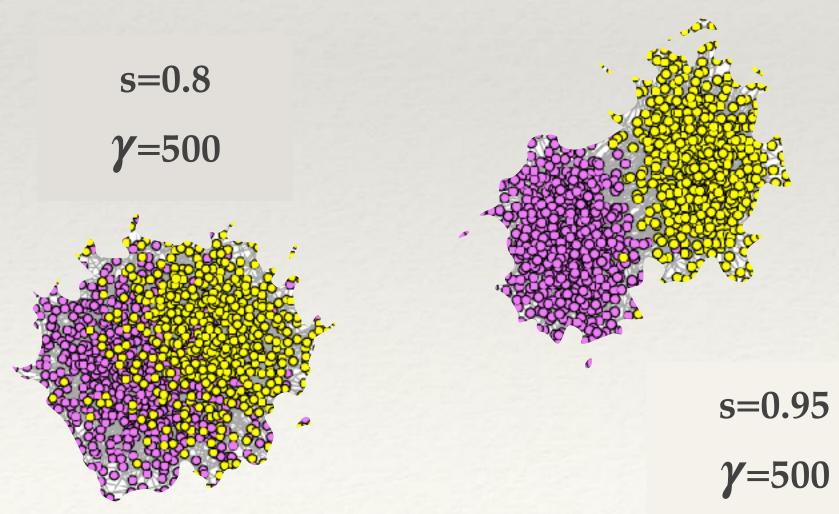
the propensity to believe is also a property of the node (gullibility)

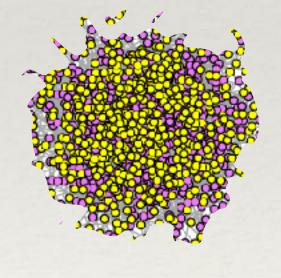
MARCELLA TAMBUSCIO

GIOVANNI LUIGI CIAMPAGLIA What does it happen when skeptics and gullible agents are segregated?



Modeling two segregated communities



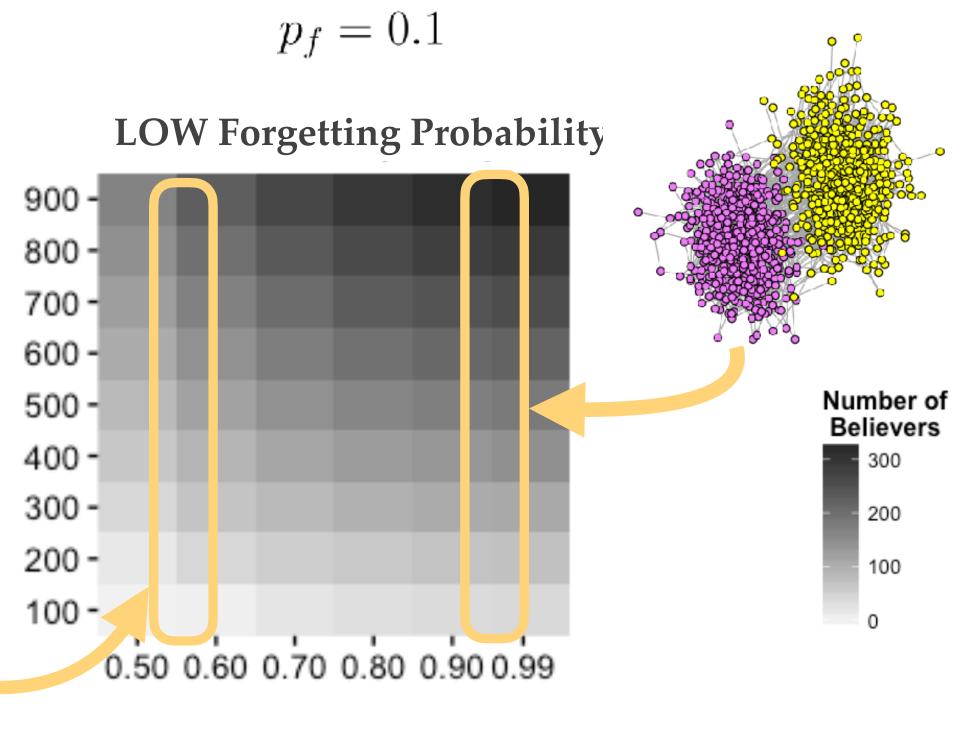


s=0.55 **γ**=500

- size $(0 < \gamma < N)$
- **# nodes** in the gullible community
- **segregation** (0.5 < **s** < 1) fraction of edges within same community [Gu-Gu, Sk-Sk]

Size vs segregation

gullible group size

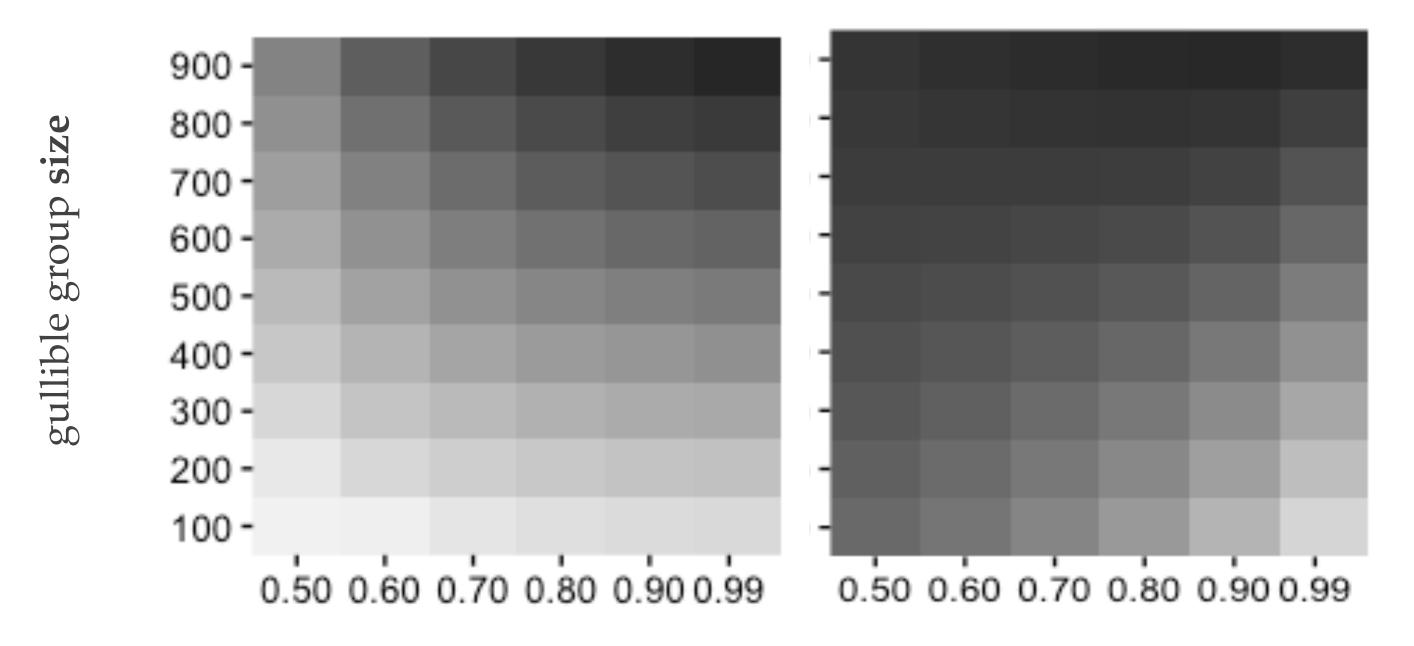


segregation

Size vs segregation

$$p_f = 0.1$$

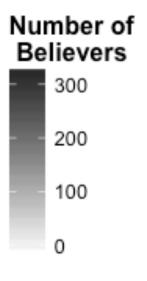
LOW Forgetting Probability



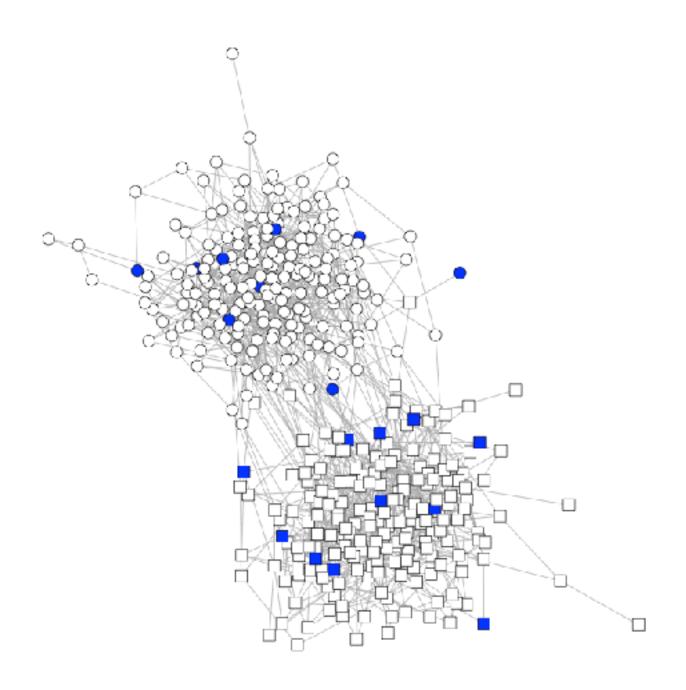
segregation

$$p_f = 0.8$$

HIGH Forgetting Probability



LOW Forgetting Rate $p_{f} = 0.1$

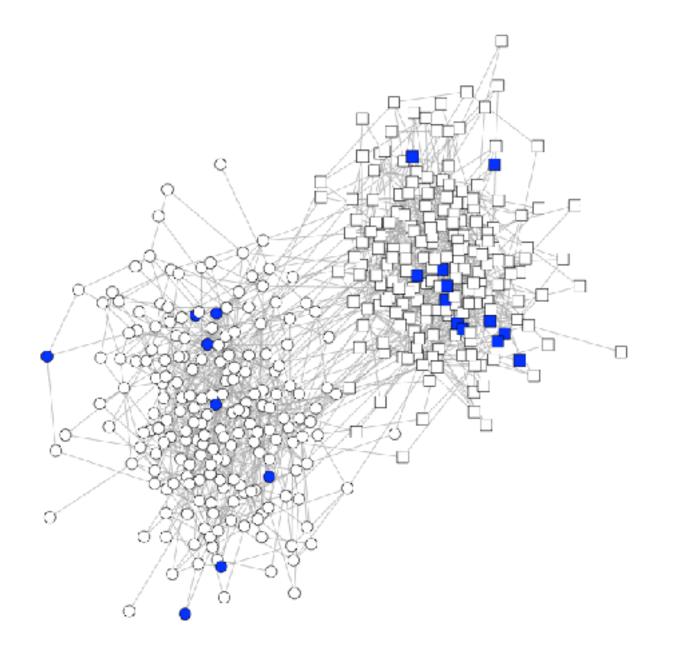


Time = 1

Role of forgetting

HIGH Forgetting Rate

 $p_f = 0.8$



Lessons learned and observations

- * We can use our model to study the fake-news diffusion process in segregated community
- * Complex contagion is observed: interplay and not trivial outcomes
- * Forgetting probability becomes relevant as well as the level of segregation:
 - * high forgetting probability (e.g., just `normal' unfounded gossip) vanishes soon in segregated communities
 - * low forgetting probability (e.g., conspiracy theories or partisanship beliefs) requires low segregation

M Tambuscio, D F M Oliveira, G L Ciampaglia, G Ruffo, Netr Journal of Computational Social Science (2018) 1: 261.

M Tambuscio, D F M Oliveira, G L Ciampaglia, G Ruffo, Network segregation in a model of misinformation and fact-checking,

real data: vaccines

twitter data from IU <u>https://osome.iuni.iu.edu</u>

#askscotflu,#GetVax,#hcsmvac, #McrFluSafe13,#McrFluSafe14, #MeaslesTruth,#RUuptodate, #Vaccinate,#vaccination, #vaccines,#VaccinesWork

segregation: 0.97

real data: chemtrails

#chemtrails,#opchemtrails, #iwantmyblueskyback, #globaldimming,#geoengineering, #chemsky, #chemclouds, #whatintheworldaretheyspraying, #chemtrail,#weathermodification, #weathercontrol

twitter data from IU <u>https://osome.iuni.iu.edu</u>

#instantweatherpro #sky #cielo #clouds #reverse #nubes

segregation: 0.99

Evaluating debunking strategies

- * We live in a **segregated** society: let's accept it!
- * Misinformation can survive in the network for a long time: low forgetting probability
- ** hubs, bridges) is vaccinated first
- * Where to place fact-checkers?
- Stronger hypothesis: a believer do not verify (pverify = 0)
 - * they can still forget
 - to protect the skeptics!

What-if analysis

Computational epidemiology: immunization works better if some node in the network (e.g.,

* we can accept to leave half of the population in their own (false) beliefs, but we want at least

Basic settings with no verification

Setting

segregation: 0.92 (high)

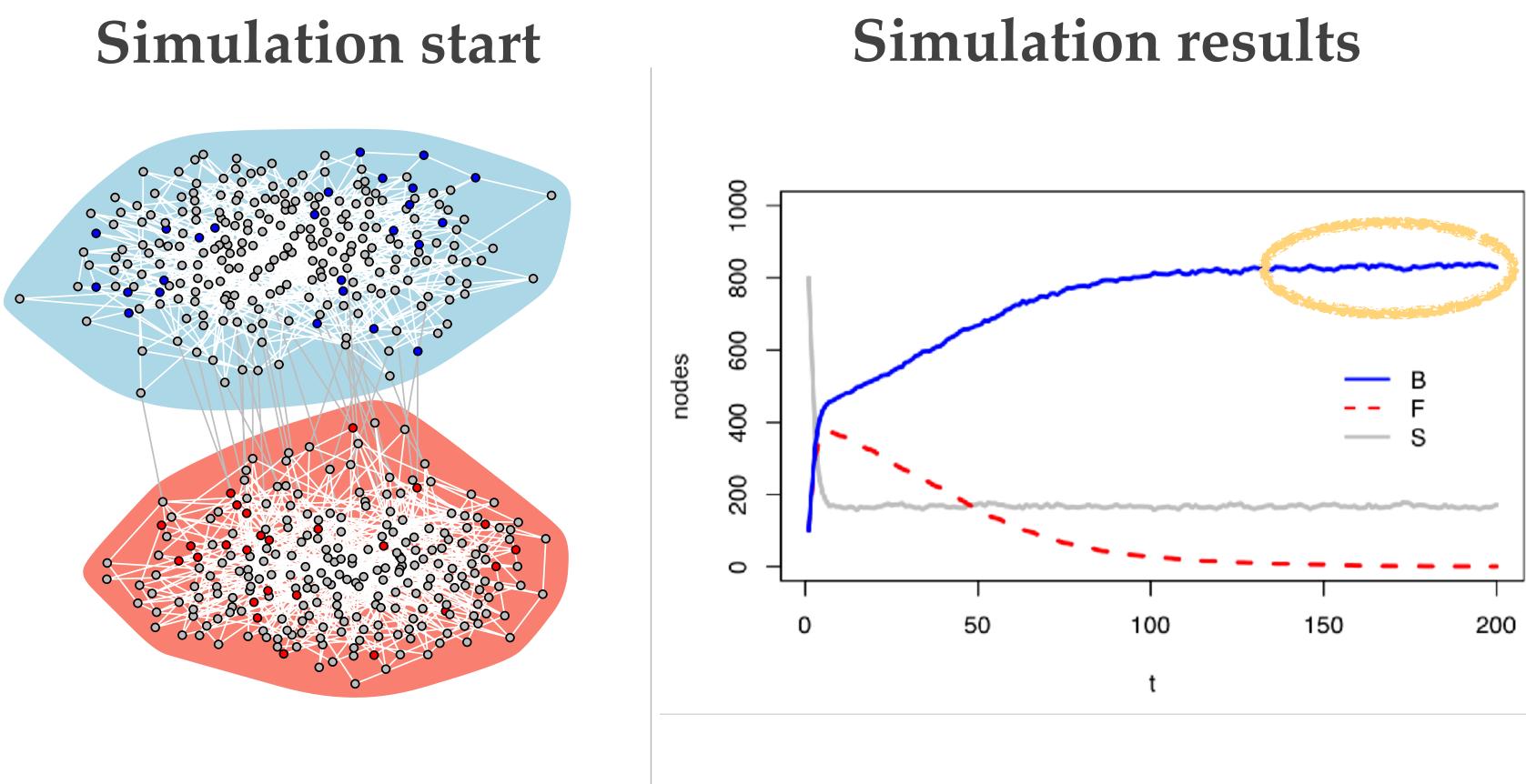
forgetting: 0.1 (low)

gullible group:

- α: 0.8
- seeders B: 10%

skeptical group:

- α: 0.3
- seeders FC: 10%



As expected: very **bad**!

Eternal fact-checkers placed at random

Setting

segregation: 0.92 (high)

forgetting: 0.1 (low)

gullible group:

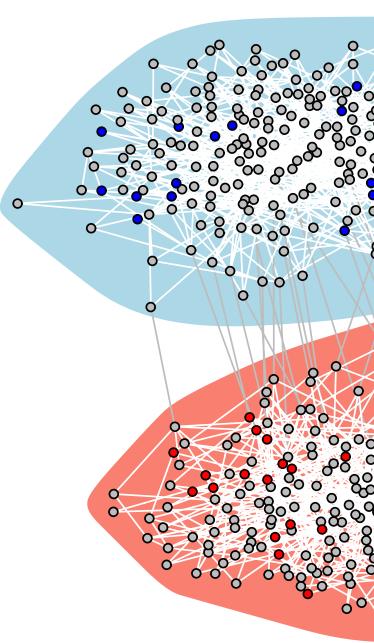
- α: 0.8
- seeders B: 10%

skeptical group:

• α: 0.3

seeders are eFC

FC 1007



Simulation results Simulation start 100 800 600 400 200 0 50 100 150 n

better, but still...

Setting

segregation: 0.92 (high)

forgetting: 0.1 (low)

gullible group:

• α: 0.8

• α: 0.3

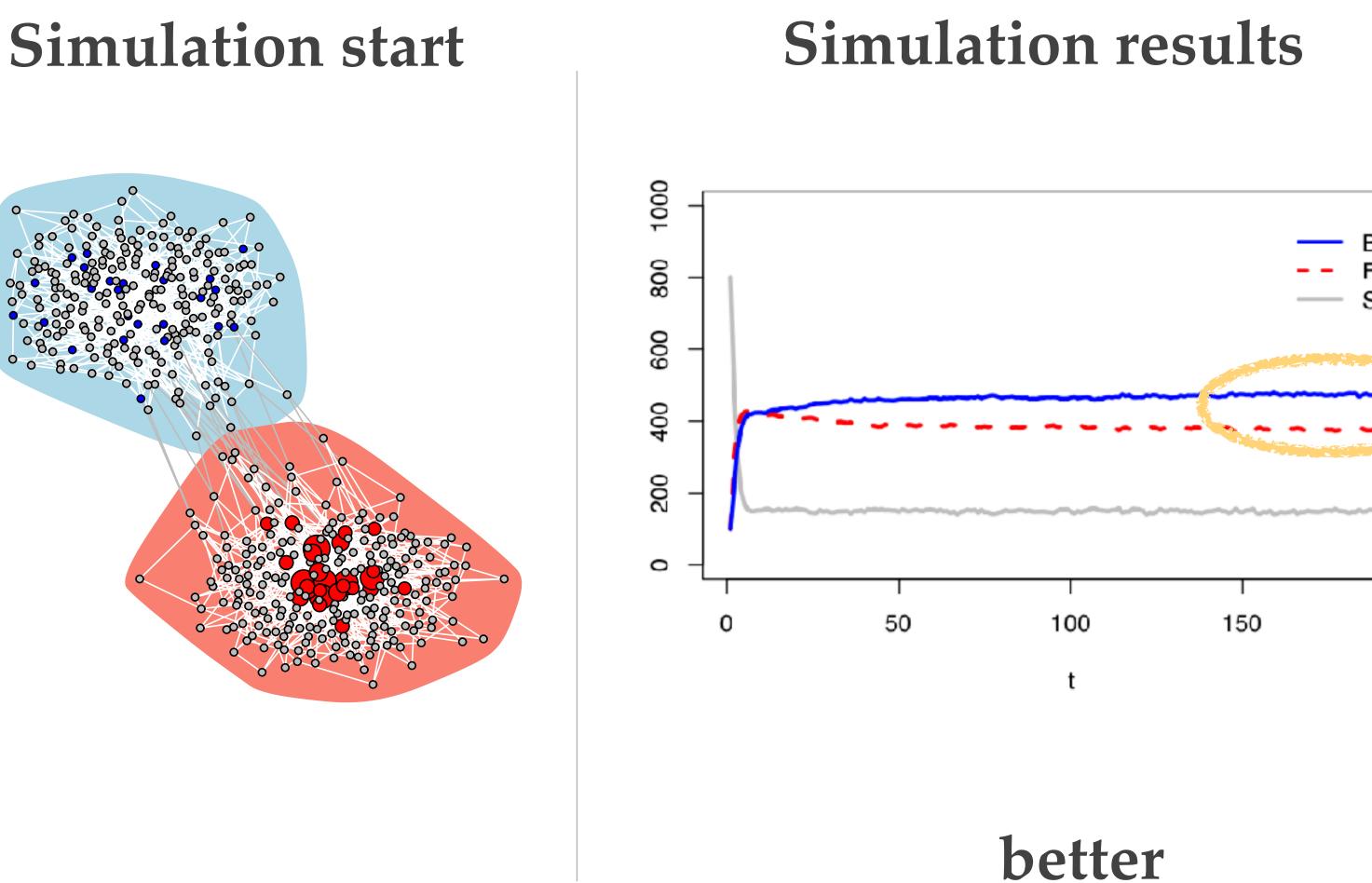
• seeders B: 10%

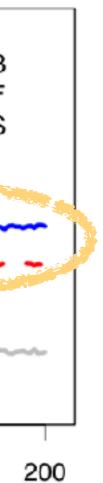
seeders FC 10%

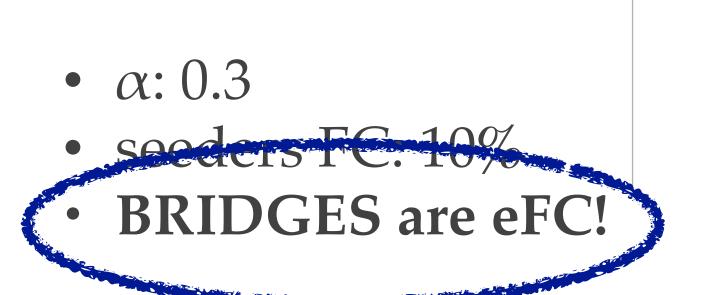
HUBS are eFC!

skeptical group:

Hubs as eternal fact-checkers







skeptical group:

- seeders B: 10%
- α : 0.8

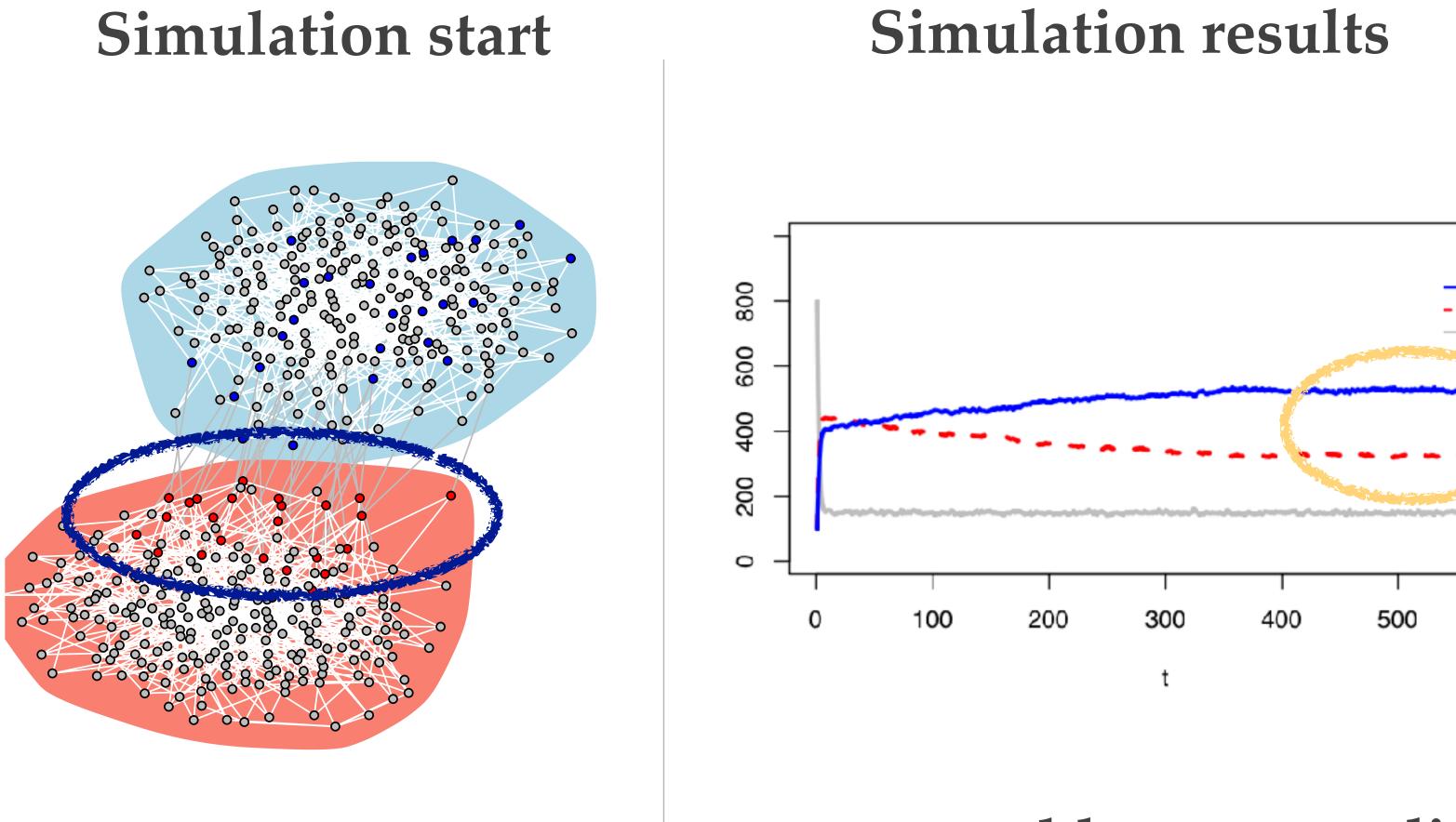
gullible group:

forgetting: 0.1 (low)

segregation: 0.92 (high)

Setting

Bridges as eternal fact-checker

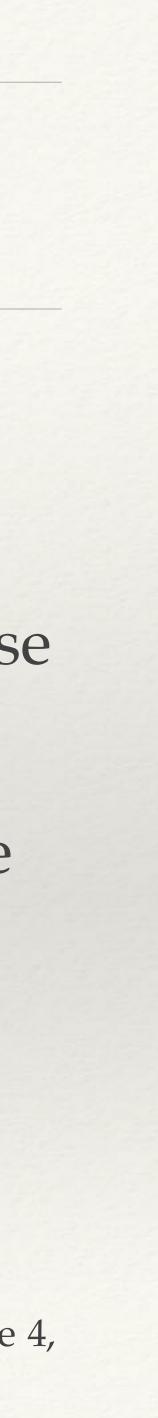


comparable, more realistic

Lessons learned and observations

- * Debunking activism is often considered useless or counterproductive
- However, a world without fact-checking is harmless against fake-news circulation: skeptics exposed to misinformation will turn into believers because of social influence
- Skeptics with links to gullible subjects should be the first to be exposed to the fact-checking: misinformation will survive in the network, but their communities can be 'protected' by such gatekeepers
- * Note: no socio-psychological assumption so far. Real world is much more complicated

M Tambuscio, G. Ruffo, Fact-checking strategies to limit urban legends spreading in a segregated society, in Applied Network Science 4, 116 (2019), Springer, <u>https://appliednetsci.springeropen.com/articles/10.1007/s41109-019-0233-1</u>



protect the vulnerable, encourage skepticism

Who is the gatekeeper?

Finland is reported as winning the war against fake news in the classrooms: education first

Teachers and the education system have a great **responsibility**

SPECIAL REPORT

Finland is winning the war on fake news. What it's learned may be crucial to Western democracy

By Eliza Mackintosh, CNN Video by Edward Kiernan, CNN

Helsinki, Finland (CNN) – On a recent afternoon in Helsinki, a group of students gathered to hear a lecture on a subject that is far from a staple in most community college curriculums.

Standing in front of the classroom at Espoo Adult Education Centre, Jussi Toivanen worked his way through his PowerPoint presentation. A slide titled "Have you been hit by the Russian troll army?" included a checklist of methods used to deceive readers on social media: image and video manipulations, half-truths, intimidation and false profiles.

¥ f

